Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis

被引:117
|
作者
Kong, Linggen [1 ]
Karatchevtseva, Inna [1 ]
Gregg, Daniel J. [1 ]
Blackford, Mark G. [1 ]
Holmes, Rohan [1 ]
Triani, Gerry [1 ]
机构
[1] Australian Nucl Sci & Technol Org, Inst Mat Engn, Lucas Heights, NSW 2234, Australia
关键词
Gadolinium zirconate; Neodymium zirconate; Pyrochlore; Soft chemical synthesis; Solid-state structure; TEMPERATURE HEAT-CAPACITY; THERMAL-CONDUCTIVITY; ION-IRRADIATION; THERMOPHYSICAL PROPERTIES; ZIRCONATE PYROCHLORES; INFRARED FREQUENCIES; VIBRATIONAL-SPECTRA; RAMAN-SPECTROSCOPY; SIZE DISTRIBUTION; PHASE-TRANSITION;
D O I
10.1016/j.jeurceramsoc.2013.05.011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Pyrochlore structured Gd2Zr2O7 and Nd2Zr2O7 are produced via complex precipitation processing. A suite of characterization techniques, including FTIR, Raman, X-ray and electron diffraction, TEM, SEM as well as nitrogen sorption are employed to investigate the structural and grain size evolution of the synthesized and calcined powder. Results show that Gd2Zr2O7 with the pyrochlore structure are produced after calcination at 1400 degrees C for 12h while Nd2Zr2O7 has already formed the pyrochlore structure at 1200 degrees C. This method allows the formation of dense materials at relatively low temperature, with bulk densities over 92% of the theoretical values achieved after sintering at 1400 degrees C for 50 h. This unique aqueous synthetic method provides a simple pathway to produce pyrochlore lanthanide zirconate without using either organic solvent and/or mechanical milling procedures, making the synthesis protocol an attractive potential scale-up production of highly refractory ceramics. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3273 / 3285
页数:13
相关论文
共 50 条
  • [1] Atomic disorder in Gd2Zr2O7 pyrochlore
    Zhang, F. X.
    Lang, M.
    Ewing, R. C.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (19)
  • [2] Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping
    Mandal B.P.
    Deshpande S.K.
    Tyagi A.K.
    [J]. Journal of Materials Research, 2008, 23 (04) : 911 - 916
  • [3] Solidification of Uranium and Thorium in Nd2Zr2O7 Pyrochlore
    Wang, Lielin
    Xie, Hua
    Chen, Qingyun
    Li, Jiangbo
    Xie, Yuqi
    [J]. Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2021, 55 (12): : 2309 - 2316
  • [4] Shock Synthesis of Gd2Zr2O7
    Sekine, Toshimori
    Zhou, Qiang
    Chen, Pengwan
    Tan, Zhen
    Ran, Haotian
    Liu, Jianjun
    [J]. EXPLOSION SHOCK WAVES AND HIGH STRAIN RATE PHENOMENA, 2019, 13 : 31 - 34
  • [5] MECHANISM OF FORMATION OF SM2ZR2O7 AND GD2ZR2O7 COMPOUNDS WITH PYROCHLORE STRUCTURE
    FOMINA, LN
    PALGUEV, SF
    [J]. ZHURNAL NEORGANICHESKOI KHIMII, 1977, 22 (02): : 326 - 330
  • [6] Neutron diffraction studies of Gd2Zr2O7 pyrochlore
    Kennedy, Brendan J.
    Zhou, Qingdi
    Avdeev, Maxim
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2011, 184 (07) : 1695 - 1698
  • [7] Synthesis and Characterization of Thorium-doped Nd2Zr2O7 Pyrochlore
    Wang Lie-Lin
    Xie Hua
    Chen Qing-Yun
    Wang Qian
    Long Yong
    Deng Chao
    Zhang Ke-Xin
    [J]. JOURNAL OF INORGANIC MATERIALS, 2015, 30 (01) : 81 - 86
  • [8] Low temperature heat capacity of Nd2Zr2O7 pyrochlore
    Lutique, S
    Javorsky, P
    Konings, RJM
    van Genderen, ACG
    van Miltenburg, JC
    Wastin, F
    [J]. JOURNAL OF CHEMICAL THERMODYNAMICS, 2003, 35 (06): : 955 - 965
  • [9] New pathway for the preparation of pyrochlore Nd2Zr2O7 nanoparticles
    Kong, Linggen
    Karatchevtseva, Inna
    Aughterson, Robert D.
    Davis, Joel
    Zhang, Yingjie
    Lumpkin, Gregory R.
    Triani, Gerry
    [J]. CERAMICS INTERNATIONAL, 2015, 41 (06) : 7618 - 7625
  • [10] Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7
    Kaliyaperumal, Chitrarasu
    Sankarakumar, Amirthapandian
    Palanisamy, Jegadeesan
    Paramasivam, Thangadurai
    [J]. MATERIALS LETTERS, 2018, 228 : 493 - 496