SINGLE INDEX LATENT VARIABLE MODELS FOR NETWORK TOPOLOGY INFERENCE

被引:0
|
作者
Mei, Jonathan [1 ]
Moura, Jose M. F. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
Sparse; Low-rank; Graph Signal Processing; Optimization; Topology; SELECTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A semi-parametric, non-linear regression model in the presence of latent variables is applied towards learning network graph structure. These latent variables can correspond to un-modeled phenomena or unmeasured agents in a complex system of interacting entities. This formulation jointly estimates non-linearities in the underlying data generation, the direct interactions between measured entities, and the indirect effects of unmeasured processes on the observed data. The learning is posed as regularized empirical risk minimization. Details of the algorithm for learning the model are outlined. Experiments demonstrate the performance of the learned model on real data.
引用
收藏
页码:703 / 707
页数:5
相关论文
共 50 条
  • [1] SILVar: Single Index Latent Variable Models
    Mei, Jonathan
    Moura, Jose M. F.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (11) : 2790 - 2803
  • [2] Latent variable models are network models
    Molenaar, Peter C. M.
    BEHAVIORAL AND BRAIN SCIENCES, 2010, 33 (2-3) : 166 - +
  • [3] Spectral Latent Variable Models for perceptual inference
    Kanaujia, Atul
    Sminchisescu, Cristian
    Metaxas, Dimitris
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 142 - +
  • [4] Exact Inference for Integer Latent-Variable Models
    Winner, Kevin
    Sujono, Debora
    Sheldon, Dan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [5] Properties of latent variable network models
    Rastelli, Riccardo
    Friel, Nial
    Raftery, Adrian E.
    NETWORK SCIENCE, 2016, 4 (04) : 407 - 432
  • [6] Latent Variable Time-varying Network Inference
    Tomasi, Federico
    Tozzo, Veronica
    Salzo, Saverio
    Verri, Alessandro
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 2338 - 2346
  • [7] Inference and Interval Estimation for Indirect Effects With Latent Variable Models
    Falk, Carl F.
    Biesanz, Jeremy C.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (06) : 1012 - 1012
  • [8] Efficient inference for sparse latent variable models of transcriptional regulation
    Dai, Zhenwen
    Iqbal, Mudassar
    Lawrence, Neil D.
    Rattray, Magnus
    BIOINFORMATICS, 2017, 33 (23) : 3776 - 3783
  • [9] What are the advantages of MCMC based inference in latent variable models?
    Paap, R
    STATISTICA NEERLANDICA, 2002, 56 (01) : 2 - 22
  • [10] Causal Effect Inference with Deep Latent-Variable Models
    Louizos, Christos
    Shalit, Uri
    Mooij, Joris
    Sontag, David
    Zemel, Richard
    Welling, Max
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30