Sparse Edge Visual Odometry using an RGB-D Camera

被引:0
|
作者
Hsu, Jhih-Lei [1 ]
Lin, Huei-Yung [1 ,2 ]
机构
[1] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 621, Taiwan
[2] Natl Chung Cheng Univ, Adv Inst Mfg High Tech Innovat, Chiayi 621, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a sparse visual odometry model for RGB-D cameras, which minimizes the photometric errors over dispersed edge points. In contrast to the feature-based methods, we use cells to extract the features on the edge images. This allows us to maintain the robustness of the information and make the computation more efficient. Furthermore, the different degree of exposure is represented as a posterior probability in each feature points. We can adjust the weights to improve the pose according to the probability. Since the estimate might not be accurate due to the feature points affected by sensor noise, we use the geometry and mixture distribution to update the depth values. The PnP algorithm is then used to adjust the pose again and reduce the camera drift in the front-end process. Experiments are carried out using public datasets to demonstrate the effectiveness of the proposed method.
引用
收藏
页码:964 / 969
页数:6
相关论文
共 50 条
  • [1] Edge and Intensity based Visual Odometry for RGB-D Camera
    Yao, Erliang
    Zhang, Hexin
    Zhang, Guoliang
    Xu, Hui
    [J]. 2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [2] A Novel Hybrid Visual Odometry Using an RGB-D Camera
    Wang, Huiguo
    Wu, Xinyu
    Chen, Zhiheng
    He, Yong
    [J]. PROCEEDINGS 2018 33RD YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2018, : 47 - 51
  • [3] Visual Odometry using RGB-D Camera on Ceiling Vision
    Wang, Han
    Mou, Wei
    Suratno, Hendra
    Seet, Gerald
    Li, Maohai
    Lau, M. W. S.
    Wang, Danwei
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [4] Fast Visual Odometry Based Sparse Geometric Constraint for RGB-D Camera
    Guo, Ruibin
    Zhou, Dongxiang
    Peng, Keju
    Liu, Yunhui
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (01): : 214 - 218
  • [5] Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera
    Huang, Albert S.
    Bachrach, Abraham
    Henry, Peter
    Krainin, Michael
    Maturana, Daniel
    Fox, Dieter
    Roy, Nicholas
    [J]. ROBOTICS RESEARCH, ISRR, 2017, 100
  • [6] Graph-Based Visual SLAM and Visual Odometry Using an RGB-D Camera
    Kluessendorff, Jan Helge
    Hartmann, Jan
    Forouher, Dariush
    Maehle, Erik
    [J]. 2013 9TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO), 2013, : 288 - 293
  • [7] Continuous Direct Sparse Visual Odometry from RGB-D Images
    Ghaffari, Maani
    Clark, William
    Bloch, Anthony
    Eustice, Ryan M.
    Grizzle, Jessy W.
    [J]. ROBOTICS: SCIENCE AND SYSTEMS XV, 2019,
  • [8] Robust Visual Odometry to Irregular Illumination Changes with RGB-D camera
    Kim, Pyojin
    Lim, Hyon
    Kim, H. Jin
    [J]. 2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3688 - 3694
  • [9] Adaptive Visual Odometry Using RGB-D Cameras
    Fabian, Joshua R.
    Clayton, Garrett M.
    [J]. 2014 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2014, : 1533 - 1538
  • [10] Dynamic RGB-D Visual Odometry
    Yang, Dongsheng
    Bi, Shusheng
    Cai, Yueri
    Zheng, Jingxiang
    Yuan, Chang
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 941 - 946