ADAPTIVE COMPRESSIVE SAMPLING USING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

被引:0
|
作者
Zahedi, Ramin [1 ]
Krakow, Lucas W. [1 ]
Chong, Edwin K. P. [1 ]
Pezeshki, Ali [1 ]
机构
[1] Colorado State Univ, ECE Dept, Ft Collins, CO 80523 USA
关键词
Compressive sensing; POMDP; rollout; Q-value approximation; adaptive sensing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present an approach to adaptive measurement selection in compressive sensing for estimating sparse signals. Given a fixed number of measurements, we consider the sequential selection of the rows of a compressive measurement matrix to maximize the mutual information between the measurements and the sparse signal's support. We formulate this problem as a partially observable Markov decision process (POMDP), which enables the application of principled reasoning for sequential measurement selection based on Bellman's optimality condition.
引用
收藏
页码:5269 / 5272
页数:4
相关论文
共 50 条
  • [1] MEDICAL TREATMENTS USING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
    Goulionis, John E.
    JP JOURNAL OF BIOSTATISTICS, 2009, 3 (02) : 77 - 97
  • [2] Partially Observable Markov Decision Processes and Robotics
    Kurniawati, Hanna
    ANNUAL REVIEW OF CONTROL ROBOTICS AND AUTONOMOUS SYSTEMS, 2022, 5 : 253 - 277
  • [3] Quantum partially observable Markov decision processes
    Barry, Jennifer
    Barry, Daniel T.
    Aaronson, Scott
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [4] A tutorial on partially observable Markov decision processes
    Littman, Michael L.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2009, 53 (03) : 119 - 125
  • [5] PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES WITH PARTIALLY OBSERVABLE RANDOM DISCOUNT FACTORS
    Martinez-Garcia, E. Everardo
    Minjarez-Sosa, J. Adolfo
    Vega-Amaya, Oscar
    KYBERNETIKA, 2022, 58 (06) : 960 - 983
  • [6] Position Validation Strategies using Partially Observable Markov Decision Processes
    Kochenderfer, Mykel J.
    Shih, Kevin J.
    Chryssanthacopoulos, James P.
    Rose, Charles E.
    Elder, Tomas R.
    2011 IEEE/AIAA 30TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2011,
  • [7] POSITION VALIDATION STRATEGIES USING PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
    Kochenderfer, Mykel J.
    Shih, Kevin J.
    Chryssanthacopoulos, James P.
    Rose, Charles E.
    Elder, Tomas R.
    2011 IEEE/AIAA 30TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2011,
  • [8] Modeling speech using Partially Observable Markov Decision Processes (POMDP)
    Jonas, M
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 4016 - 4016
  • [9] Information Directed Policy Sampling for Partially Observable Markov Decision Processes with Parametric Uncertainty
    Kumar, Peeyush
    Ghate, Archis
    ADVANCES IN SERVICE SCIENCE, 2019, : 201 - 209
  • [10] Automatic recovery using bounded partially observable Markov decision processes
    Joshi, Kaustubh R.
    Hiltunen, Matti A.
    Sanders, William H.
    Schlichting, Richard D.
    DSN 2006 INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS, PROCEEDINGS, 2006, : 445 - 454