Universal test for quantum one-way permutations

被引:7
|
作者
Kawachi, A
Kobayashi, H
Koshiba, T
Putra, RH
机构
[1] Fujitsu Labs Ltd, Secure Comp Lab, Nakahara Ku, Kawasaki, Kanagawa 2118588, Japan
[2] Japan Sci & Technol Agcy, Exploratory Res Adv Technol, Quantum Comp & Informat Project, Tokyo 1130033, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[4] Japan Sci & Technol Agcy, Exploratory Res Adv Technol, Quantum Comp & Informat Project, Kyoto 6020873, Japan
[5] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Kyoto 6068501, Japan
关键词
quantum computation; computational cryptography; one-way permutation; one-way function; universal test;
D O I
10.1016/j.tcs.2005.07.036
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The next bit test was introduced by Blum and Micali and proved by Yao to be a universal test for cryptographic pseudorandom generators. On the other hand, no universal test for the cryptographic one-wayness of functions (or permutations) is known, although the existence of cryptographic pseudorandom generators is equivalent to that of cryptographic one-way functions. In the quantum computation model, Kashefi, Nishimura and Vedral gave a sufficient condition of (cryptographic) quantum one-way permutations and conjectured that the condition would be necessary. In this paper, we affirmatively settle their conjecture and complete a necessary and sufficient condition for quantum one-way permutations. The necessary and sufficient condition can be regarded as a universal test for quantum one-way permutations, since the condition is described as a collection of stepwise tests similar to the next bit test for pseudorandom generators. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:370 / 385
页数:16
相关论文
共 50 条
  • [1] Universal test for quantum one-way permutations
    Kawachi, A
    Kobayashi, H
    Koshiba, T
    Putra, RH
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 839 - 850
  • [2] On quantum one-way permutations
    Kashefi, Elham
    Nishimura, Harumichi
    Vedral, Vlatko
    [J]. Quantum Information and Computation, 2002, 2 (05): : 379 - 398
  • [3] On quantum one-way permutations
    Kashefi, E
    Nishimura, H
    Vedral, V
    [J]. QUANTUM INFORMATION & COMPUTATION, 2002, 2 (05) : 379 - 398
  • [4] Experimental characterization of universal one-way quantum computing
    Bell, B. A.
    Tame, M. S.
    Clark, A. S.
    Nock, R. W.
    Wadsworth, W. J.
    Rarity, J. G.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [5] Characterizing the existence of one-way permutations
    Hemaspaandra, LA
    Rothe, J
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 257 - 261
  • [6] Universal construction of a full quantum one-way function
    Yao Tang
    Tao Shang
    Jianwei Liu
    [J]. Quantum Information Processing, 21
  • [7] Preserving universal resources for one-way quantum computing
    Tanamoto, Tetsufumi
    Becker, Daniel
    Stojanovic, Vladimir M.
    Bruder, Christoph
    [J]. PHYSICAL REVIEW A, 2012, 86 (03):
  • [8] Universal construction of a full quantum one-way function
    Tang, Yao
    Shang, Tao
    Liu, Jianwei
    [J]. QUANTUM INFORMATION PROCESSING, 2022, 21 (07)
  • [10] Quantum Bit-commitment for small storage based on quantum one-way permutations
    Keisuke Tanaka
    [J]. New Generation Computing, 2003, 21 : 339 - 345