Techno-economic assessment of dispatchable hydrogen production by multiple electrolysers in Libya

被引:25
|
作者
Rahil, Abdulla [1 ]
Gammon, Rupert [1 ]
Brown, Neil [1 ]
机构
[1] De Montfort Univ, Inst Energy & Sustainable Dev, Queens Bldg, Leicester LE1 9BH, Leics, England
关键词
Electricity pricing mechanism; Demand management; Forecourt electrolysis; Hydrogen refuelling station; ALKALINE ELECTROLYSIS; ECONOMIC-ANALYSIS; ENERGY-STORAGE; FUEL-CELL; ELECTRICITY; SYSTEM; OPTIMIZATION; DESIGN; FUTURE; COST;
D O I
10.1016/j.est.2017.12.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the worldwide growth of renewable energy generation, the value of hydrogen production by electrolysis as a demand management tool for electricity networks is likely to increase. Electrolytic hydrogen can be sold as a fuel, chemical feedstock or injected into pipelines to lower the carbon content of natural gas. The main obstacle to hydrogen's use as a fuel or energy storage method is the price. The highest costs are in the capital expenditure and the consumption of feedstock (electricity and water). In this paper, three major techno-economic aspects of the system are investigated, including technical analyses of both the energy absorbed by the process in the provision of electricity demand management services and in its meeting of fuel demand, plus an economic assessment of the hydrogen price at the at the point of sale. Thus, the study investigates how only off-peak electricity is used to produce hydrogen via onsite electrolysis at a number of garage forecourts. In a simulated case study, six garage forecourts are assumed to be sited in Darnah, a small city on the east coast of Libya. An electricity pricing mechanism is devised to allow the energy producer (utility company) and energy consumer (garage forecourt operator) to make a profit. Short term (2015) and long term (2030) cost scenarios are applied. Matlab software was used to simulate this process. Without any government support or changes in regulation and policy, hydrogen prices were 10.00 pound/kg, 9.80 pound/kg, 9.60 pound/kg, 10.00 pound/kg, 9.40 pound/kg and 10.30 pound/kg for forecourts 1-6 respectively under the 2015 cost scenario. The electricity price represents around 17% of the total hydrogen cost, whereas, due to the investment cost reduction in 2030, the average prices of hydrogen dropped to 6.50 pound/kg, 6.60 pound/kg, 6.30 pound/kg, 6.40 pound/kg, 6.20 pound/kg and 6.50 pound/kg for stations 1-6 respectively. The feedstock cost share became 44% in the 2030 cost scenario. Nearly 53.91% and 53.77% of available energy is absorbed in short and long term scenarios respectively. Under the long term cost scenario, 65% of hydrogen demand can be met, whereas less than 60% of hydrogen demand is met under the short term scenario. The system reliability (i.e. the meeting of hydrogen fuel demand) is quite low due to the operational mode of the system. Increasing the system size (mainly electrolyser production capacity) can clearly improve the system reliability. (C) 2018 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:46 / 60
页数:15
相关论文
共 50 条
  • [1] Dispatchable Hydrogen production by multiple electrolysers to provide clean fuel and responsive demand in Libya
    Rahil, Abdulla
    Gammon, Rupert
    Brown, Neil
    2018 9TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2018,
  • [2] Techno-economic assessment of hydrogen production from seawater
    Dokhani, Sepanta
    Assadi, Mohsen
    Pollet, Bruno G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (26) : 9592 - 9608
  • [3] Techno-economic and environmental assessment of LNG export for hydrogen production
    Ghafri, Saif ZS. Al
    Revell, Caitlin
    Di Lorenzo, Mauricio
    Xiao, Gongkui
    Buckley, Craig E.
    May, Eric F.
    Johns, Michael
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (23) : 8343 - 8369
  • [4] Techno-economic assessment of various hydrogen production methods - A review
    Kannah, R. Yukesh
    Kavitha, S.
    Preethi
    Karthikeyan, O. Parthiba
    Kumar, Gopalakrishnan
    Dai-Viet, N. Vo.
    Banu, J. Rajesh
    BIORESOURCE TECHNOLOGY, 2021, 319 (319)
  • [5] Techno-economic Assessment of Hydrogen Production Using Solar Energy
    Ferreira M.
    Pereira R.M.M.
    Pereira A.J.C.
    Renewable Energy and Power Quality Journal, 2022, 20 : 751 - 756
  • [6] Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany
    Bhandari, Ramchandra
    Shah, Ronak Rakesh
    Renewable Energy, 2021, 177 : 915 - 931
  • [7] Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany
    Bhandari, Ramchandra
    Shah, Ronak Rakesh
    RENEWABLE ENERGY, 2021, 177 : 915 - 931
  • [8] Techno-economic assessment of renewable hydrogen production and the influence of grid participation
    Raab, Moritz
    Koerner, Robin
    Dietrich, Ralph-Uwe
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (63) : 26798 - 26811
  • [9] Techno-economic and environmental assessment of hydrogen production through ammonia decomposition
    Devkota, Sijan
    Cha, Jin-Young
    Shin, Beom-Ju
    Mun, Ji-Hun
    Yoon, Hyung Chul
    Mazari, Shaukat Ali
    Moon, Jong-Ho
    APPLIED ENERGY, 2024, 358
  • [10] Techno-economic assessment of renewable hydrogen production for mobility: A case study
    Pettinau, Alberto
    Marotto, Davide
    Dessi, Federica
    Ferrara, Francesca
    ENERGY CONVERSION AND MANAGEMENT, 2024, 311