Stable Feature Ranking with Logistic Regression Ensembles

被引:0
|
作者
Nowling, Ronald J. [1 ]
Emrich, Scott J. [1 ]
机构
[1] Univ Notre Dame, Comp Sci & Engn, Notre Dame, IN 46656 USA
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Beyond automated classification, supervised machine-learning models can be interpreted to find which features or combination of features distinguish sets of classes. Logistic Regression (LR) is an example of a model well-suited for human interpretation. Unfortunately, results from feature ranking with LR may not be reliable and reproducible for the same dataset. We demonstrate that stability and consistency can be achieved via ensembles ("LR ensembles"). As a specific example of the real-world utility of our associated framework, we apply LR ensembles to single-nucleotide polymorphisms (SNPs) associated with the recent speciation of the malaria vectors Anopheles gambiae and Anopheles coluzzii and compare with the more common univariate metric F-ST.
引用
收藏
页码:585 / 589
页数:5
相关论文
共 50 条
  • [1] Multinomial Logistic Regression Ensembles
    Lee, Kyewon
    Ahn, Hongshik
    Moon, Hojin
    Kodell, Ralph L.
    Chen, James J.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2013, 23 (03) : 681 - 694
  • [2] Stable variable ranking and selection in regularized logistic regression for severely imbalanced big binary data
    Nadeem, Khurram
    Jabri, Mehdi-Abderrahman
    PLOS ONE, 2023, 18 (01):
  • [3] Feature ranking ensembles for facial action unit classification
    Windeatt, Terry
    Dias, Kaushala
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2008, 5064 : 267 - 279
  • [4] Ensemble Logistic Regression for Feature Selection
    Zakharov, Roman
    Dupont, Pierre
    PATTERN RECOGNITION IN BIOINFORMATICS, 2011, 7036 : 133 - 144
  • [5] Ranking of author assessment parameters using Logistic Regression
    Muhammad Usman
    Ghulam Mustafa
    Muhammad Tanvir Afzal
    Scientometrics, 2021, 126 : 335 - 353
  • [6] Spam filtering based on online ranking logistic regression
    Sun, G. (guanglu_sun@163.com), 1600, Tsinghua University (53):
  • [7] Ranking of author assessment parameters using Logistic Regression
    Usman, Muhammad
    Mustafa, Ghulam
    Afzal, Muhammad Tanvir
    SCIENTOMETRICS, 2021, 126 (01) : 335 - 353
  • [8] Feature ranking for multi-target regression
    Petkovic, Matej
    Kocev, Dragi
    Dzeroski, Saso
    MACHINE LEARNING, 2020, 109 (06) : 1179 - 1204
  • [9] Feature ranking for multi-target regression
    Matej Petković
    Dragi Kocev
    Sašo Džeroski
    Machine Learning, 2020, 109 : 1179 - 1204
  • [10] Step down logistic regression for feature selection
    Baykal, N
    APPLIED STATISTICAL SCIENCE IV, 1999, 4 : 121 - 131