Evaluation of document binarization using eigen value decomposition

被引:0
|
作者
Kumar, Deepak [1 ]
Prasad, M. N. Anil [1 ]
Ramakrishnan, A. G. [1 ]
机构
[1] Indian Inst Sci, Dept Elect Engn, Med Intelligence & Language Engn Lab, Bangalore 560012, Karnataka, India
来源
关键词
binarization; evaluation; eigen value decomposition; threshold; degraded documents; document quality measure; ENTROPY;
D O I
10.1117/12.2008502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A necessary step for the recognition of scanned documents is binarization, which is essentially the segmentation of the document. In order to binarize a scanned document, we can find several algorithms in the literature. What is the best binarization result for a given document image? To answer this question, a user needs to check different binarization algorithms for suitability, since different algorithms may work better for different type of documents. Manually choosing the best from a set of binarized documents is time consuming. To automate the selection of the best segmented document, either we need to use ground-truth of the document or propose an evaluation metric. If ground-truth is available, then precision and recall can be used to choose the best binarized document. What is the case, when ground-truth is not available? Can we come up with a metric which evaluates these binarized documents? Hence, we propose a metric to evaluate binarized document images using eigen value decomposition. We have evaluated this measure on DIBCO and H-DIBCO datasets. The proposed method chooses the best binarized document that is close to the ground-truth of the document.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Face Recognition System by using Eigen Value Decomposition
    Tunio, Irfan Ali
    Soomro, Shafiullah
    Soomro, Toufique Ahmed
    Bhatti, Mohammad Tarique
    Shaikh, Mohsin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (05): : 8 - 12
  • [2] EVALUATION OF BINARIZATION METHODS FOR DOCUMENT IMAGES
    TRIER, OD
    TAXT, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (03) : 312 - 315
  • [3] Automatic evaluation of document binarization results
    Badekas, E
    Papamarkos, N
    [J]. PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 1005 - 1014
  • [4] BINARIZATION AND MULTITHRESHOLDING OF DOCUMENT IMAGES USING CONNECTIVITY
    OGORMAN, L
    [J]. CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1994, 56 (06): : 494 - 506
  • [5] COMPUTING THE MAGNETIC POLARIZABILITY OF THIN CONDUCTING SHEETS USING AN EIGEN VALUE DECOMPOSITION
    Gabbay, Jonathan E.
    Scott, Waymond R., Jr.
    [J]. 2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2609 - 2612
  • [6] DETECTING FUNCTIONAL MODULES OF THE BRAIN USING EIGEN VALUE DECOMPOSITION OF THE SIGNLESS LAPLACIAN
    Sui, Xiuchao
    Li, Shaohua
    Rajapakse, Jagath
    [J]. 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 511 - 514
  • [7] Performance Evaluation Methodology for Historical Document Image Binarization
    Ntirogiannis, Konstantinos
    Gatos, Basilis
    Pratikakis, Ioannis
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 595 - 609
  • [8] Binarization and its Evaluation for Urdu Nastalique Document Images
    Naz, Mamoona
    Akram, Qurat Ul Ain
    Hussain, Sarmad
    [J]. 2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2013, : 213 - 218
  • [9] An Objective Evaluation Methodology for Document Image Binarization Techniques
    Ntirogiannis, K.
    Gatos, B.
    Pratikakis, I.
    [J]. PROCEEDINGS OF THE 8TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS, 2008, : 217 - 224
  • [10] Adaptive document binarization
    Sauvola, J
    Seppanen, T
    Haapakoski, S
    Pietikainen, M
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION, VOLS 1 AND 2, 1997, : 147 - 152