Galois points for a non-reflexive plane curve of low degree

被引:6
|
作者
Fukasawa, Satoru [1 ]
机构
[1] Yamagata Univ, Fac Sci, Dept Math Sci, Yamagata 9908560, Japan
关键词
Galois point; Rational point; Positive characteristic; Non-reflexive curve; Strange curve; FIELD-THEORY;
D O I
10.1016/j.ffa.2013.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a plane curve C. A point P in the projective plane is said to be Galois with respect to C if the projection from the point P induces a Galois extension of function fields. In this article, we give a new example of a plane curve C of degree q + 1 such that the set of Galois points for C coincides with the one of F-q-rational points of P-2. This curve appears in the classification list of 'non-reflexive plane curves of low degree' in positive characteristic. We also determine the sets of Galois points for such low-degree plane curves. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [1] NON-REFLEXIVE PROJECTIVE CURVES OF LOW DEGREE
    BALLICO, E
    HEFEZ, A
    [J]. MANUSCRIPTA MATHEMATICA, 1991, 70 (04) : 385 - 396
  • [2] Galois points for a plane curve and its dual curve
    Fukasawa, Satoru
    Miura, Kei
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2014, 132 : 61 - 74
  • [3] On a number of rational points on a plane curve of low degree
    Cheon, Eun Ju
    Homma, Masaaki
    Kim, Seon Jeong
    Lee, Namyong
    [J]. DISCRETE MATHEMATICS, 2017, 340 (06) : 1327 - 1334
  • [4] Galois points for a plane curve in arbitrary characteristic
    Satoru Fukasawa
    [J]. Geometriae Dedicata, 2009, 139
  • [5] Galois points for a plane curve in arbitrary characteristic
    Fukasawa, Satoru
    [J]. GEOMETRIAE DEDICATA, 2009, 139 (01) : 211 - 218
  • [6] Galois points for a plane curve in characteristic two
    Fukasawa, Satoru
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (02) : 343 - 353
  • [7] Galois points for a plane curve and its dual curve, II
    Fukasawa, Satoru
    Miura, Kei
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (05) : 2038 - 2048
  • [8] NON-REFLEXIVE CURVES
    HEFEZ, A
    [J]. COMPOSITIO MATHEMATICA, 1989, 69 (01) : 3 - 35
  • [9] REFLEXIVE OR NON-REFLEXIVE + SYNTAX OF PRONOUNS
    VANDERLEEK, FC
    [J]. DUTCH QUARTERLY REVIEW OF ANGLO-AMERICAN LETTERS, 1980, 10 (02): : 124 - 146
  • [10] Degree theory for (S+) mappings in non-reflexive banach spaces
    Wang, Fulong
    Chen, Yuqing
    O'Regan, Donal
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 229 - 232