Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants

被引:111
|
作者
Wu, Jiandong [1 ]
Jiang, Yingli [1 ]
Liang, Yani [1 ]
Chen, Long [1 ]
Chen, Weijun [1 ]
Cheng, Beijiu [1 ]
机构
[1] Anhui Agr Univ, Natl Engn Lab Crop Stress Resistance, Coll Life Sci, Hefei 230036, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Maize; ZmMYB3R; Transcriptional regulation; ABA; Stomatal aperture; Abiotic stress; OSMOTIC-STRESS; SUPEROXIDE-DISMUTASE; SIGNAL-TRANSDUCTION; ECTOPIC EXPRESSION; GENE-EXPRESSION; ABSCISIC-ACID; COLD STRESS; CELL-CYCLE; C-MYB; ABA;
D O I
10.1016/j.plaphy.2019.02.010
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MYB proteins are major transcription factors that play significant roles in plant defenses against various stresses. However, available information regarding stress-related MYB genes in maize is minimal. Herein, a maize MYB gene, ZmMYB3R, was cloned and functionally characterized. Subcellular localisation analysis showed that ZmMYB3R is localised to the nucleus. Yeast one-hybrid results revealed that ZmMYB3R has trans-activation activity, and a minimal activation domain at the C-terminus spanning residues 217-563. Gene expression analysis suggested that ZmMYB3R was induced by drought, salt and abscisic acid (ABA). Transgenic Arabidopsis plants overexpressing ZmMYB3R displayed enhanced growth performance and higher survival rates, elevated catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) enzyme activities, increased sensitivity to ABA, and regulation of the stomatal aperture, suggesting that ZmMYB3R enhances tolerance to drought and salt stress. qRT-PCR assays revealed elevated expression levels of stress/ABA genes in transgenic plants following stress treatments. Moreover, transgenic plants accumulated higher ABA content than wild-type plants under drought and salt stress conditions. Collectively, these results indicate that ZmMYB3R is a positive transcription factor that enhances tolerance to drought and salt stress via an ABA-dependent pathway. The findings may prove useful for engineering economically important crops.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 50 条
  • [1] A Sweet Potato MYB Transcription Factor IbMYB330 Enhances Tolerance to Drought and Salt Stress in Transgenic Tobacco
    Wang, Chong
    Lei, Jian
    Jin, Xiaojie
    Chai, Shasha
    Jiao, Chunhai
    Yang, Xinsun
    Wang, Lianjun
    [J]. GENES, 2024, 15 (06)
  • [2] ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress
    Li, Meng
    Lin, Lin
    Zhang, Yuanhu
    Sui, Na
    [J]. MOLECULAR BIOLOGY REPORTS, 2019, 46 (04) : 3937 - 3944
  • [3] ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress
    Meng Li
    Lin Lin
    Yuanhu Zhang
    Na Sui
    [J]. Molecular Biology Reports, 2019, 46 : 3937 - 3944
  • [4] ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton
    Wang, Chunling
    Lu, Guoqing
    Hao, Yuqiong
    Guo, Huiming
    Guo, Yan
    Zhao, Jun
    Cheng, Hongmei
    [J]. PLANTA, 2017, 246 (03) : 453 - 469
  • [5] ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton
    Chunling Wang
    Guoqing Lu
    Yuqiong Hao
    Huiming Guo
    Yan Guo
    Jun Zhao
    Hongmei Cheng
    [J]. Planta, 2017, 246 : 453 - 469
  • [6] Over-Expression of an R2R3 MYB Gene, MdMYB108L, Enhances Tolerance to Salt Stress in Transgenic Plants
    Du, Bingyang
    Liu, Heng
    Dong, Kuntian
    Wang, Yong
    Zhang, Yuanhu
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [7] Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis
    Gao, Fei
    Zhou, Jing
    Deng, Ren-Yu
    Zhao, Hai-Xia
    Li, Cheng-Lei
    Chen, Hui
    Suzuki, Tatsuro
    Park, Sang-Un
    Wu, Qi
    [J]. JOURNAL OF PLANT PHYSIOLOGY, 2017, 214 : 81 - 90
  • [8] Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis
    Zong Na
    Li Xing-juan
    Wang Lei
    Wang Ying
    Wen Hong-tao
    Li Ling
    Zhang Xia
    Fan Yun-liu
    Zhao Jun
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (11) : 2379 - 2393
  • [9] Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis
    ZONG Na
    LI Xing-juan
    WANG Lei
    WANG Ying
    WEN Hong-tao
    LI Ling
    ZHANG Xia
    FAN Yun-liu
    ZHAO Jun
    [J]. Journal of Integrative Agriculture, 2018, 17 (11) : 2379 - 2393
  • [10] Overexpression of maize ZmDBP3 enhances tolerance to drought and cold stress in transgenic Arabidopsis plants
    Chang-Tao Wang
    Yin-Mao Dong
    [J]. Biologia, 2009, 64 : 1108 - 1114