Parameter selection in SVM with RBF kernel function

被引:0
|
作者
Han Shunjie [1 ]
Cao Qubo [1 ]
Han Meng [1 ]
机构
[1] Changchun Univ Technol, Coll Elect & Elect Engn, Changchun, Peoples R China
关键词
Support vector machine (SVM); RBF kernel function; Parameter selection; Engineering vehicles;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Kernel function parameter selection is one of the important parts of support vector machine (SVM) modeling. In this paper, we analyzed the features of double linear search method and the grid search method selection method features and the algorithm implementation steps, which consider the selection of RBF kernel function parameter as an example, based on the analysis it is also given the double linear grid search method, and we would get the selection of support vector machines (SVM) nuclear parameter of automatic transmission engineering vehicles by using this method. Experiments show, double linear grid search method sets the advantages which double linear search method of small amount of training and grid search method to learn high precision.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] RBF kernel parameter selection for SVM based on PSO
    Wu, HX
    Peng, XY
    Peng, Y
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 1603 - 1606
  • [2] Selection and Parameter Optimization of SVM Kernel Function for Underwater Target Classification
    Sherin, B. M.
    Supriya, M. H.
    2015 IEEE UNDERWATER TECHNOLOGY (UT), 2015,
  • [3] APPLYING AUTOMATIC KERNEL PARAMETER SELECTION METHOD TO THE FULL BANDWIDTH RBF KERNEL FUNCTION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Chen, Kai-Ching
    Li, Cheng-Hsuan
    Kuo, Bor-Chen
    Wang, Min-Shian
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3442 - 3445
  • [4] Optimal Gaussian Kernel Parameter Selection for SVM Classifier
    Yang, Xu
    Xiong, HuiLin
    Yang, Xin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (12) : 3352 - 3358
  • [5] A Kernel-Based Feature Selection Method for SVM With RBF Kernel for Hyperspectral Image Classification
    Kuo, Bor-Chen
    Ho, Hsin-Hua
    Li, Cheng-Hsuan
    Hung, Chih-Cheng
    Taur, Jin-Shiuh
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) : 317 - 326
  • [6] Parameter Selection of Gaussian Kernel for One-Class SVM
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 927 - 939
  • [7] Selection of Gaussian Kernel Parameter for SVM Based on Convex Estimation
    Men, Changqian
    Wang, Weqjian
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 : 709 - 714
  • [8] Optimization of SVM Method with RBF kernel
    Wang Cheng
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 2306 - 2310
  • [9] A Methodology Using EMO for Parameter Estimation of SVM Kernel Function
    Watanabe, Shinya
    Kimura, Yukiyo
    2008 IEEE CONFERENCE ON SOFT COMPUTING IN INDUSTRIAL APPLICATIONS SMCIA/08, 2009, : 211 - 216
  • [10] SVM parameter selection algorithm based on maximum kernel similarity diversity
    Tang, Yao-Hua
    Guo, Wei-Min
    Gao, Jing-Huai
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (02): : 210 - 215