Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis

被引:3
|
作者
Xu, Xue [1 ]
Wang, Yibo [2 ]
Wang, Yuwen [3 ]
机构
[1] Harbin Univ, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[2] China Acad Space Technol, Inst Telecommun Satellite, Beijing, Peoples R China
[3] Harbin Normal Univ, Sch Math & Sci, Harbin 150025, Heilongjiang, Peoples R China
关键词
predator-prey; taxis; steady state; bifurcation; Neumann boundary; GLOBAL BIFURCATION; PATTERN-FORMATION; SYSTEM; DYNAMICS;
D O I
10.3934/mbe.2019086
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper investigates the steady state bifurcation analysis in a general Ronsenzwing-MacArthur predator prey model with two prey-taxis under Neumann boundary conditions. The results show that the rich dynamics in predator prey systems with two prey taxis.
引用
收藏
页码:1786 / 1797
页数:12
相关论文
共 50 条
  • [1] BIFURCATION ANALYSIS FOR A ONE PREDATOR AND TWO PREY MODEL WITH PREY-TAXIS
    Haskell, Evan C.
    Bell, Jonathan
    JOURNAL OF BIOLOGICAL SYSTEMS, 2021, 29 (02) : 495 - 524
  • [2] Global bifurcation of coexistence states for a prey-predator model with prey-taxis/predator-taxis
    Li, Shanbing
    Wu, Jianhua
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [3] Stability and Bifurcation in a Predator-Prey System with Prey-Taxis
    Qiu, Huanhuan
    Guo, Shangjiang
    Li, Shangzhi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [4] Predator-prey model with prey-taxis and diffusion
    Chakraborty, Aspriha
    Singh, Manmohan
    Lucy, David
    Ridland, Peter
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) : 482 - 498
  • [5] Bifurcation analysis of a diffusive predator-prey model with hyperbolic mortality and prey-taxis
    Li, Yan
    Lv, Zhiyi
    Zhang, Fengrong
    Hao, Hui
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024, 17 (01)
  • [6] Global bifurcation for a Holling-Tanner predator-prey model with prey-taxis
    Zhang, Lina
    Fu, Shengmao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 460 - 472
  • [7] A Quasilinear Predator-Prey Model with Indirect Prey-Taxis
    Xing, Jie
    Zheng, Pan
    Pan, Xu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [8] Stationary pattern and bifurcation of a Leslie-Gower predator-prey model with prey-taxis
    Yan, Xiao
    Maimaiti, Yimamu
    Yang, Wenbin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 163 - 192
  • [9] Predator-prey model with diffusion and indirect prey-taxis
    Ignacio Tello, J.
    Wrzosek, Dariusz
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11): : 2129 - 2162
  • [10] A Quasilinear Predator-Prey Model with Indirect Prey-Taxis
    Jie Xing
    Pan Zheng
    Xu Pan
    Qualitative Theory of Dynamical Systems, 2021, 20