Nonlinear anisotropic diffusion filtering for multiscale edge enhancement

被引:56
|
作者
Keeling, SL
Stollberger, R
机构
[1] Graz Univ, Inst Math, A-8010 Graz, Austria
[2] Graz Univ, Gemeinsame Einrichtung Magnetresonanz MR, A-8010 Graz, Austria
关键词
D O I
10.1088/0266-5611/18/1/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear anisotropic diffusion filtering is a procedure based on nonlinear evolution partial differential equations which seeks to improve images qualitatively by removing noise while preserving details and even enhancing edges. However, well known implementations are sensitive to parameters which are necessarily tuned to sharpen a narrow range of edge slopes; otherwise, edges are either blurred or staircased. In this work, nonlinear anisotropic diffusion filters have been developed which sharpen edges over a wide range of slope scales and which reduce noise conservatively with dissipation purely along feature boundaries. Specifically, the range of sharpened edge slopes is widened as backward diffusion normal to level sets is balanced with forward diffusion tangent to level sets. Also, noise is reduced by selectively altering the balance toward diminishing normal backward diffusion and particularly toward total variation filtering. The theoretical motivation for the proposed filters is presented together with computational results comparing them with other nonlinear anisotropic diffusion filters on both synthetic images and magnetic resonance images.
引用
收藏
页码:175 / 190
页数:16
相关论文
共 50 条
  • [1] New Multiscale Speckle Suppression and Edge Enhancement with Nonlinear Diffusion and Homomorphic Filtering for Medical Ultrasound Imaging
    Kang, Jinbum
    Yoo, Yangmo
    [J]. MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [2] ANALYTICAL APPROXIMATIONS FOR NONLINEAR DIFFUSION TIME IN MULTISCALE EDGE ENHANCEMENT
    Platero, C.
    Sanguino, J.
    Tobar, M. C.
    Poncela, J. M.
    Asensio, G.
    [J]. VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 78 - 81
  • [3] Implementation of Edge-Enhancement Nonlinear Anisotropic Diffusion Filtering Using Different CUDA Memory Models
    Attia, M. H.
    Elshehaby, S. A.
    Elmaghraby, A. S.
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2015, : 501 - 504
  • [4] Anisotropic and nonlinear diffusion applied to image enhancement and edge detection
    Oussous, M. Ait
    Alaa, N.
    Khouya, Y. Ait
    [J]. INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2014, 49 (02) : 122 - 133
  • [5] Ultrasound speckle suppression and edge enhancement using multiscale nonlinear wavelet diffusion
    Yue, Yong
    Croitoru, Mihai M.
    Bidani, Akhil
    Zwischenberger, Joseph B.
    Clark, John W., Jr.
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6429 - 6432
  • [6] Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images
    Yue, Y
    Croitoru, MM
    Zwischenberger, JB
    Clark, JW
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (03) : 297 - 311
  • [7] Contrast Enhancement by Nonlinear Diffusion Filtering
    Liang, Zhetong
    Liu, Weijian
    Yao, Ruohe
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (02) : 673 - 686
  • [8] Nonlinear filtering of hyperspectral images with anisotropic diffusion
    Lennon, M
    Mercier, G
    Hubert-Moy, L
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2477 - 2479
  • [9] Foundations and applications of nonlinear anisotropic diffusion filtering
    Weickert, J
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 283 - 286
  • [10] NONLINEAR IMAGE FILTERING WITH EDGE AND CORNER ENHANCEMENT
    NITZBERG, M
    SHIOTA, T
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (08) : 826 - 833