Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates

被引:106
|
作者
Lapeyre, Corentin J. [1 ]
Misdariis, Antony [1 ]
Cazard, Nicolas [1 ]
Veynante, Denis [2 ]
Poinsot, Thierry [3 ]
机构
[1] CERFACS, 42 Ave Gaspard Coriolis, F-31057 Toulouse, France
[2] Univ Paris Saclay, Cent Supelec, CNRS, EM2C, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[3] IMFT, Alle Prof Camille Soula, F-31400 Toulouse, France
关键词
Turbulent combustion; Deep learning; Flame surface density; Direct numerical simulation; LARGE-EDDY SIMULATION; FLAME WRINKLING MODEL; BOUNDARY-CONDITIONS; COMBUSTION; EVOLUTION; EQUATION; DEEP; LES;
D O I
10.1016/j.combustflame.2019.02.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents a new approach for premixed turbulent combustion modeling based on convolutional neural networks (CNN).(1) We first propose a framework to reformulate the problem of subgrid flame surface density estimation as a machine learning task. Data needed to train the CNN is produced by direct numerical simulations (DNS) of a premixed turbulent flame stabilized in a slot-burner configuration. A CNN inspired from a U-Net architecture is designed and trained on the DNS fields to estimate subgrid-scale wrinkling. It is then tested on an unsteady turbulent flame where the mean inlet velocity is increased for a short time and the flame must react to a varying turbulent incoming flow. The CNN is found to efficiently extract the topological nature of the flame and predict subgrid-scale wrinkling, outperforming classical algebraic models. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 50 条
  • [1] On the Error Estimate in Sub-Grid Models for Particles in Turbulent Flows
    Calzavarini, E.
    Donini, A.
    Lavezzo, V.
    Marchioli, C.
    Pitton, E.
    Soldati, A.
    Toschi, F.
    [J]. DIRECT AND LARGE-EDDY SIMULATION VIII, 2011, 15 : 171 - +
  • [2] AN ALGEBRAIC SUB-GRID SCALE TURBULENT COMBUSTION MODEL
    Wang, F.
    Leboeuf, F.
    Huang, Y.
    Zhou, L. X.
    Sayma, A. I.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 2, PTS A AND B, 2010, : 1 - 8
  • [3] A Nonlinear sub-grid scale model for compressible turbulent flow
    Li Bin
    Wu Songping
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2007, 20 (06) : 495 - 500
  • [4] A Priori Sub-grid Modelling Using Artificial Neural Networks
    Prat, Alvaro
    Sautory, Theophile
    Navarro-Martinez, S.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2020, 34 (06) : 397 - 417
  • [5] Sub-Grid Scale Plume Modeling
    Karamchandani, Prakash
    Vijayaraghavan, Krish
    Yarwood, Greg
    [J]. ATMOSPHERE, 2011, 2 (03): : 389 - 406
  • [6] Sub-grid Reaction Progress Variable Variance Closure in Turbulent Premixed Flames
    F. B. Keil
    M. Klein
    N. Chakraborty
    [J]. Flow, Turbulence and Combustion, 2021, 106 : 1195 - 1212
  • [7] Sub-grid Reaction Progress Variable Variance Closure in Turbulent Premixed Flames
    Keil, F. B.
    Klein, M.
    Chakraborty, N.
    [J]. FLOW TURBULENCE AND COMBUSTION, 2021, 106 (04) : 1195 - 1212
  • [8] A sub-grid scale cavitation inception model
    Bappy, Mehedi H.
    Carrica, Pablo M.
    Li, Jiajia
    Martin, J. Ezequiel
    Vela-Martin, Alberto
    Freire, Livia S.
    Buscaglia, Gustavo C.
    [J]. PHYSICS OF FLUIDS, 2022, 34 (03)
  • [9] Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates
    Pierce, J. R.
    Theodoritsi, G.
    Adams, P. J.
    Pandis, S. N.
    [J]. JOURNAL OF AEROSOL SCIENCE, 2009, 40 (05) : 385 - 393
  • [10] Invariance embedded physics-infused deep neural network-based sub-grid scale models for turbulent flows
    Bose, Rikhi
    Roy, Arunabha M.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128