On the stability of the generalized Schur algorithm

被引:0
|
作者
Mastronardi, N
Van Dooren, P
Van Huffel, S
机构
[1] Katholieke Univ Leuven, COSIC, ESAT SISTA, Dept Elect Engn, B-3001 Louvain, Belgium
[2] Univ Basilicata, Dipartimento Matemat, I-85100 Potenza, Italy
[3] Catholic Univ Louvain, Dept Engn Math, B-1348 Louvain, Belgium
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The generalized Schur algorithm (GSA) is a fast method to compute the Cholesky factorization of a wide variety of structured matrices. The stability property of the GSA depends on the way it is implemented. In [15] GSA was shown to be as stable as the Schur algorithm, provided one hyperbolic rotation in factored form [3] is performed at each iteration. Fast and efficient algorithms for solving Structured Total Least Squares problems [14,15] are based on a particular implementation of GSA requiring two hyperbolic transformations at each iteration. In this paper the authors prove the stability property of such implementation provided the hyperbolic transformations are performed in factored form [3].
引用
收藏
页码:560 / 567
页数:8
相关论文
共 50 条
  • [1] Stabilizing the generalized Schur algorithm
    Chandrasekaran, S
    Sayed, AH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) : 950 - 983
  • [2] The Schur algorithm and coefficient characterizations for generalized Schur functions
    Constantinescu, T
    Gheondea, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) : 2705 - 2713
  • [3] The Schur algorithm for generalized Schur functions IV: Unitary realizations
    Alpay, D
    Azizov, TY
    Dijksma, A
    Langer, H
    Wanjala, G
    CURRENT TRENDS IN OPERATOR THEORY AND ITS APPLICATIONS, 2004, 149 : 23 - 45
  • [4] The Schur algorithm for generalized Schur functions I: coisometric realizations
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS, 2001, 129 : 1 - 36
  • [5] The Generalized Schur Algorithm and Some Applications
    Laudadio, Teresa
    Mastronardi, Nicola
    Van Dooren, Paul
    AXIOMS, 2018, 7 (04):
  • [6] GENERALIZED CHANDRASEKHAR RECURSIONS FROM THE GENERALIZED SCHUR-ALGORITHM
    SAYED, AH
    KAILATH, T
    LEVARI, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (11) : 2265 - 2269
  • [7] Computational Complexity of Robust Schur Stability Analysis by the Generalized Stability Feeler
    Matsuda, Tadasuke
    Matsui, Hajime
    Kawanishi, Michihiro
    Narikiyo, Tatsuo
    2014 4TH AUSTRALIAN CONTROL CONFERENCE (AUCC), 2014, : 55 - 59
  • [8] The Schur algorithm for generalized Schur functions II: Jordan chains and transformations of characteristic functions
    Alpay, D
    Azizov, TY
    Dijksma, A
    Langer, H
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (01): : 1 - 29
  • [9] The Schur Algorithm for Generalized Schur Functions II: Jordan Chains and Transformations of Characteristic Functions
    D. Alpay
    T. Ya. Azizov
    A. Dijksma
    H. Langer
    Monatshefte für Mathematik, 2003, 138 (1) : 1 - 29
  • [10] The Schur algorithm for generalized Schur functions III:: J-unitary matrix polynomials on the circle
    Alpay, D
    Azizov, T
    Dijksma, A
    Langer, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 113 - 144