Dynamic Lot Size Optimization with Reinforcement Learning

被引:0
|
作者
Voss, Thomas [1 ]
Bode, Christopher [1 ]
Heger, Jens [1 ]
机构
[1] Leuphana Univ, Unive Allee 1, D-21335 Luneburg, Germany
关键词
Simulation; Reinforcement learning; Lot sizing; DECISION-MAKING; NEURAL-NETWORKS;
D O I
10.1007/978-3-031-05359-7_30
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Production planning and control has a great influence on the economic efficiency and logistical performance of a company. In this context, this article gives an insight into the use of simulation as a virtual model of a filling machine in the process industry. Furthermore, it shows the possibilities of a reinforcement learning (RL) approach for dynamic lot sizing. The contribution indicates a possible implementation in an ERP system and shows how a decision support tool can support the planner to save up to 5% of costs compared to a human planner and a heuristic approach proposed by Groff.
引用
收藏
页码:376 / 385
页数:10
相关论文
共 50 条
  • [1] Dynamic Adjustment of Lot Sizes with Reinforcement Learning
    Voß, Thomas
    Bode, Christopher
    Heger, Jens
    [J]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116 (11): : 815 - 819
  • [2] DYNAMIC LOT SIZE
    PARSONS, JA
    [J]. JOURNAL OF SYSTEMS MANAGEMENT, 1976, 27 (01): : 40 - 42
  • [3] LOT SIZE OPTIMIZATION FOR A FOUNDRY
    STADTLER, H
    [J]. OR SPEKTRUM, 1992, 14 (04) : 217 - 227
  • [4] Constrained Reinforcement Learning for Dynamic Optimization under Uncertainty
    Petsagkourakis, P.
    Sandoval, I. O.
    Bradford, E.
    Zhang, D.
    del Rio-Chanona, E. A.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 11264 - 11270
  • [5] Dynamic multiobjective optimization driven by inverse reinforcement learning
    Zou, Fei
    Yen, Gary G.
    Zhao, Chen
    [J]. INFORMATION SCIENCES, 2021, 575 : 468 - 484
  • [6] RENAISSANCE OF LOT SIZE-OPTIMIZATION
    ALTENSCHMIDT, W
    [J]. PHARMAZEUTISCHE INDUSTRIE, 1985, 47 (08): : 873 - 880
  • [7] Fluid dynamic control and optimization using deep reinforcement learning
    Innyoung Kim
    Donghyun You
    [J]. JMST Advances, 2024, 6 (1) : 61 - 65
  • [8] Dynamic Multi-Agent Reinforcement Learning for Control Optimization
    Fagan, Derek
    Meier, Rene
    [J]. PROCEEDINGS FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 2014, : 99 - 104
  • [9] Dynamic Matching Optimization in Ridesharing System Based on Reinforcement Learning
    Abdelmoumene, Hiba
    Bencheriet, Chemesse Ennehar
    Belleili, Habiba
    Touati, Islem
    Zemouli, Chayma
    [J]. IEEE ACCESS, 2024, 12 : 29525 - 29535
  • [10] A reinforcement learning approach for dynamic multi-objective optimization
    Zou, Fei
    Yen, Gary G.
    Tang, Lixin
    Wang, Chunfeng
    [J]. INFORMATION SCIENCES, 2021, 546 : 815 - 834