Improving Arabic Sentiment Classification Using a Combined Approach

被引:0
|
作者
Brahimi, Belgacem [1 ]
Touahria, Mohamed [2 ]
Tari, Abdelkamel [1 ]
机构
[1] Univ Bejaia, Dept Comp Sci, Bejaia, Algeria
[2] Univ Setif, Dept Comp Sci, Setif, Algeria
来源
COMPUTACION Y SISTEMAS | 2020年 / 24卷 / 04期
关键词
Text mining; opinion mining; sentiment classification; supervised learning; review extraction; combined approach;
D O I
10.13053/CyS-24-4-3154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of sentiment analysis is to automatically extract and classify a textual review as expressing a positive or negative opinion. In this paper, we study the sentiment classification problem in the Arabic language. We propose a method that attempts to extract subjective parts of document reviews. First, we select explicit opinions related to given aspects. Second, a semantic approach is used to find implicit opinions and sentiments in reviews. Third, we combine the extracted aspect opinions with the sentiment words returned by the lexical approach. Finally, a feature reduction technique is applied. To evaluate the proposed method, support vector machines (SVM) classifier is applied for the classification task on two datasets. Our results indicate that the proposed approach provides superior performance in terms of classification measures.
引用
收藏
页码:1403 / 1414
页数:12
相关论文
共 50 条
  • [1] Improving sentiment analysis in Arabic: A combined approach
    Brahimi, Belgacem
    Touahria, Mohamed
    Tari, Abdelkamel
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2021, 33 (10) : 1242 - 1250
  • [2] Arabic Sentiment Classification: A Hybrid Approach
    Biltawi, Mariam
    Al-Naymat, Ghazi
    Tedmori, Sara
    [J]. 2017 INTERNATIONAL CONFERENCE ON NEW TRENDS IN COMPUTING SCIENCES (ICTCS), 2017, : 104 - 108
  • [3] Arabic Sentiment Analysis using Supervised Classification
    Duwairi, Rehab M.
    Qarqaz, Islam
    [J]. 2014 INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD (FICLOUD), 2014, : 579 - 583
  • [4] Improving Sentiment Analysis in Arabic Using Word Representation
    Alayba, Abdulaziz M.
    Palade, Vasile
    England, Matthew
    Iqbal, Rahat
    [J]. 2018 IEEE 2ND INTERNATIONAL WORKSHOP ON ARABIC AND DERIVED SCRIPT ANALYSIS AND RECOGNITION (ASAR), 2018, : 13 - 18
  • [5] Leveraging Arabic sentiment classification using an enhanced CNN-LSTM approach and effective Arabic text preparation
    Alayba, Abdulaziz M.
    Palade, Vasile
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9710 - 9722
  • [6] Arabic aspect sentiment polarity classification using BERT
    Abdelgwad, Mohammed M.
    Soliman, Taysir Hassan A.
    Taloba, Ahmed I.
    [J]. JOURNAL OF BIG DATA, 2022, 9 (01)
  • [7] Arabic aspect sentiment polarity classification using BERT
    Mohammed M. Abdelgwad
    Taysir Hassan A. Soliman
    Ahmed I. Taloba
    [J]. Journal of Big Data, 9
  • [8] A framework for Arabic sentiment analysis using supervised classification
    Duwairi, Rehab M.
    Qarqaz, Islam
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2016, 8 (04) : 369 - 381
  • [9] Ontology based combined approach for Sentiment Classification
    Shein, Khin Phyu Phyu
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND INFORMATION TECHNOLOGY, 2009, : 112 - +
  • [10] Towards Improving the Lexicon-Based Approach for Arabic Sentiment Analysis
    Abdulla, Nawaf A.
    Ahmed, Nizar A.
    Shehab, Mohammed A.
    Al-Ayyoub, Mahmoud
    Al-Kabi, Mohammed N.
    Al-rifai, Saleh
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2014, 9 (03) : 55 - 71