The embedding of space-times in five dimensions with nondegenerate Ricci tensor

被引:32
|
作者
Dahia, F [1 ]
Romero, C [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, BR-58059970 Joao Pessoa, Paraiba, Brazil
关键词
D O I
10.1063/1.1473680
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss and prove a theorem which asserts that any n-dimensional semi-Riemannian manifold can be locally embedded in an (n+1)-dimensional space with a nondegenerate Ricci tensor which is equal, up to a local analytic diffeomorphism, to the Ricci tensor of an arbitrary specified space. This may be regarded as a further extension of the Campbell-Magaard theorem. We highlight the significance of embedding theorems of increasing degrees of generality in the context of higher dimensional space-times theories and illustrate the new theorem by establishing the embedding of a general class of Ricci-flat space-times. (C) 2002 American Institute of Physics.
引用
收藏
页码:3097 / 3106
页数:10
相关论文
共 50 条
  • [1] On the Ricci tensor of non-stationary axisymmetric space-times
    Kubeka, Amos S.
    Bishop, Nigel T.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (03) : 765 - 771
  • [2] On the Ricci Tensor of Non-Stationary Axisymmetric Space-Times
    Amos S. Kubeka
    Nigel T. Bishop
    [J]. International Journal of Theoretical Physics, 2008, 47 : 765 - 771
  • [3] Riemannian space-times of Godel type in five dimensions
    Reboucas, MJ
    Teixeira, AFF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) : 2180 - 2192
  • [4] RICCI RECURRENT SPACE-TIMES WITH TORSION
    DEANDRADE, LCG
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1991, 30 (02) : 235 - 238
  • [5] Limits of space-times in five dimensions and their relation to the Segre types
    Paiva, FM
    Reboucas, MJ
    Teixeira, AFF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) : 4228 - 4236
  • [6] Conformal Ricci collineations of space-times
    Kühnel, W
    Rademacher, HB
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2001, 33 (10) : 1905 - 1914
  • [7] RICCI COLLINEATION VECTORS IN FLUID SPACE-TIMES
    TSAMPARLIS, M
    MASON, DP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (07) : 1707 - 1722
  • [8] LETTER: Conformal Ricci Collineations of Space-Times
    W. Kühnel
    H.-B. Rademacher
    [J]. General Relativity and Gravitation, 2001, 33 : 1905 - 1914
  • [9] Stationary space-times and the Simon tensor
    Bini, D
    Jantzen, RT
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2004, 119 (7-9): : 863 - 873
  • [10] Ricci Collineations for Type B Warped Space-times
    J. Carot
    L. A. Núñez
    U. Percoco
    [J]. General Relativity and Gravitation, 1997, 29 : 1223 - 1237