Opinion Consensus of Modified Hegselmann-Krause Models

被引:0
|
作者
Yang, Yuecheng [1 ]
Dimarogonas, Dimos V.
Hu, Xiaoming [1 ]
机构
[1] Royal Inst Technol KTH, Dept Math, Optimizat & Syst Theory Div, S-10044 Stockholm, Sweden
关键词
CONNECTIVITY MAINTENANCE; DYNAMICS; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the opinion consensus problem using a multi-agent setting based on the Hegselmann-Krause (H-K) Model. Firstly, we give a sufficient condition on the initial opinion distribution so that the system will converge to only one cluster. Then, modified models are proposed to guarantee convergence for more general initial conditions. The overall connectivity is maintained with these models, while the loss of certain edges can occur. Furthermore, a smooth control protocol is provided to avoid the difficulties that may arise due to the discontinuous right-hand side in the H-K model.
引用
收藏
页码:100 / 105
页数:6
相关论文
共 50 条
  • [1] Opinion consensus of modified Hegselmann-Krause models
    Yang, Yuecheng
    Dimarogonas, Dimos V.
    Hu, Xiaoming
    [J]. AUTOMATICA, 2014, 50 (02) : 622 - 627
  • [2] Consensus in the Hegselmann-Krause Model
    Lanchier, Nicolas
    Li, Hsin-Lun
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (03)
  • [3] Consensus of the Hegselmann-Krause opinion formation model with time delay
    Choi, Young-Pil
    Paolucci, Alessandro
    Pignotti, Cristina
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4560 - 4579
  • [4] Group Pressure Leads to Consensus of Hegselmann-Krause Opinion Dynamics
    Cheng, Chun
    Song, Yaoxian
    Yu, Changbin
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7945 - 7949
  • [5] On the Hegselmann-Krause conjecture in opinion dynamics
    Kurz, Sascha
    Rambau, Joerg
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (06) : 859 - 876
  • [6] Dynamical phase transitions in Hegselmann-Krause model of opinion dynamics and consensus
    Slanina, F.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 79 (01): : 99 - 106
  • [7] Dynamical phase transitions in Hegselmann-Krause model of opinion dynamics and consensus
    F. Slanina
    [J]. The European Physical Journal B, 2011, 79 : 99 - 106
  • [8] Noise leads to quasi-consensus of Hegselmann-Krause opinion dynamics
    Su, Wei
    Chen, Ge
    Hong, Yiguang
    [J]. AUTOMATICA, 2017, 85 : 448 - 454
  • [9] The noisy Hegselmann-Krause model for opinion dynamics
    Miguel Pineda
    Raúl Toral
    Emilio Hernández-García
    [J]. The European Physical Journal B, 2013, 86
  • [10] Analysis of modified Hegselmann-Krause opinion dynamics based on conformity
    Zhang S.-Q.
    Liu B.
    Chai L.
    [J]. Kongzhi yu Juece/Control and Decision, 2024, 39 (03): : 965 - 974