Robust Tensor Tracking With Missing Data Under Tensor-Train Format

被引:0
|
作者
Le Trung Thanh [1 ,2 ]
Abed-Meraim, Karim [1 ,3 ]
Nguyen Linh Trung [2 ]
Hafiane, Adel [1 ]
机构
[1] Univ Orleans, PRISME, INSA CVL, EA 4229, Orleans, France
[2] VNU Univ Engn & Technol, Hanoi 100000, Vietnam
[3] Acad Inst France IUF, F-75005 Paris, France
关键词
Tensor-train decomposition; robust adaptive algorithms; streaming data; missing data; sparse outliers; DECOMPOSITION; OPTIMIZATION;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Robust tensor tracking or robust adaptive tensor decomposition of streaming tensors is crucial when observations are corrupted by sparse outliers and missing data. In this paper, we introduce a novel tensor tracking algorithm for factorizing incomplete streaming tensors with sparse outliers under tensor-train (TT) format. The proposed algorithm consists of two main stages: online outlier rejection and tracking of TT-cores. In the former stage, outliers affecting the data streams are efficiently detected by an ADMM solver. In the latter stage, we propose an effective recursive least-squares solver to incrementally update TT-cores at each time t. Several numerical experiments on both simulated and real data are presented to verify the effectiveness of the proposed algorithm.
引用
收藏
页码:832 / 836
页数:5
相关论文
共 50 条
  • [1] Provable Tensor-Train Format Tensor Completion by Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23 : 1 - 77
  • [2] Provable Tensor-Train Format Tensor Completion by Riemannian Optimization
    Cai, Jian-Feng
    Li, Jingyang
    Xia, Dong
    [J]. Journal of Machine Learning Research, 2022, 23
  • [3] RANDOMIZED ALGORITHMS FOR ROUNDING IN THE TENSOR-TRAIN FORMAT
    Al Daas, Hussam
    Ballard, Grey
    Cazeaux, Paul
    Hallman, Eric
    Miedlar, Agnieszka
    Pasha, Mirjeta
    Reid, Tim W.
    Saibaba, Arvind K.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01): : A74 - A95
  • [4] Completion of High Order Tensor Data with Missing Entries via Tensor-Train Decomposition
    Yuan, Longhao
    Zhao, Qibin
    Cao, Jianting
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 222 - 229
  • [5] TENSOR-TRAIN DECOMPOSITION
    Oseledets, I. V.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05): : 2295 - 2317
  • [6] Nearest-neighbor interaction systems in the tensor-train format
    Gelss, Patrick
    Klus, Stefan
    Matera, Sebastian
    Schuette, Christof
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 341 : 140 - 162
  • [7] Rank Bounds for Approximating Gaussian Densities in the Tensor-Train Format
    Rohrbach, Paul B.
    Dolgov, Sergey
    Grasedyck, Lars
    Scheichl, Robert
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1191 - 1224
  • [8] Tensor-Train Discriminant Analysis
    Sofuoglu, Seyyid Emre
    Aviyente, Selin
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3422 - 3426
  • [9] SPECTRAL TENSOR-TRAIN DECOMPOSITION
    Bigoni, Daniele
    Engsig-Karup, Allan P.
    Marzouk, Youssef M.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : A2405 - A2439
  • [10] Gradient-based optimization for regression in the functional tensor-train format
    Gorodetsky, Alex A.
    Jakeman, John D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 1219 - 1238