Time fractional IHCP with Caputo fractional derivatives

被引:91
|
作者
Murio, Diego A. [1 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
III-posed problems; Caputo fractional derivatives; Grunwald-Letnikov fractional derivatives; Time fractional inverse heat conduction problem; Finite differences; Mollification;
D O I
10.1016/j.camwa.2008.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of the time fractional inverse heat conduction problem (TFIHCP) on a finite slab is investigated in the presence of measured (noisy) data when the time fractional derivative is interpreted in the sense of Caputo. A finite difference space marching scheme with adaptive regularization, using mollification techniques, is introduced. Error estimates are derived for the numerical solution of the mollified problem and several numerical examples of interest are provided. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2371 / 2381
页数:11
相关论文
共 50 条
  • [1] Approximations of fractional integrals and Caputo fractional derivatives
    Odibat, Zaid
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 527 - 533
  • [2] Regional gradient observability for fractional differential equations with Caputo time-fractional derivatives
    Zguaid K.
    El Alaoui F.-Z.
    Torres D.F.M.
    International Journal of Dynamics and Control, 2023, 11 (05) : 2423 - 2437
  • [3] Stable numerical evaluation of Grunwald-Letnikov fractional derivatives applied to a fractional IHCP
    Murio, Diego A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (02) : 229 - 243
  • [4] Study of Time Fractional Burgers' Equation using Caputo, Caputo-Fabrizio and Atangana-Baleanu Fractional Derivatives
    Doley, Swapnali
    Kumar, A. Vanav
    Singh, Karam Ratan
    Jino, L.
    ENGINEERING LETTERS, 2022, 30 (03)
  • [5] The space-time fractional diffusion equation with Caputo derivatives
    Huang F.
    Liu F.
    Journal of Applied Mathematics and Computing, 2005, 19 (1-2) : 179 - 190
  • [6] On Caputo modification of the Hadamard fractional derivatives
    Yusuf Y. Gambo
    Fahd Jarad
    Dumitru Baleanu
    Thabet Abdeljawad
    Advances in Difference Equations, 2014
  • [7] Numerical study of a new time-fractional Mpox model using Caputo fractional derivatives
    Venkatesh, A.
    Manivel, M.
    Baranidharan, B.
    Shyamsunder
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [8] On Caputo modification of the Hadamard fractional derivatives
    Gambo, Yusuf Y.
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [9] ON THE FRACTIONAL NEWTON METHOD WITH CAPUTO DERIVATIVES
    Celik, Emine
    Li, Yulong
    Telyakovskiy, Aleksey S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2022, 28 (04): : 273 - 276
  • [10] ON CAPUTO FRACTIONAL DERIVATIVES VIA CONVEXITY
    Farid, G.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (03): : 393 - 399