Asymptotics of Bayesian estimation for nested models under misspecification

被引:0
|
作者
Miya, Nozomi [1 ]
Suko, Tota
Yasuda, Goki [1 ]
Matsushima, Toshiyasu [1 ]
机构
[1] Waseda Univ, Dept Math & Appl Math, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
关键词
CODES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the asymptotic properties of the cumulative logarithmic loss in the decision problem based on the Bayesian principle and explicitly identify the constant terms of the asymptotic equations as in the case of previous studies by Clarke and Barron and Gotoh et al. We assume that the set of models is given that identify a class of parameterized distributions, it has a nested structure and the source distribution is not contained in all the families of parameterized distributions that are identified by each model. The cumulative logarithmic loss is the sum of the logarithmic loss functions for each time decision-, e. g., the redundancy in the universal noiseless source coding.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 50 条
  • [1] Asymptotics of Bayesian Inference for a Class of Probabilistic Models under Misspecification
    Miya, Nozomi
    Suko, Tota
    Yasuda, Goki
    Matsushima, Toshiyasu
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (12) : 2352 - 2360
  • [2] Non-Bayesian Post-Model-Selection Estimation as Estimation Under Model Misspecification
    Harel, Nadav
    Routtenberg, Tirza
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 3641 - 3657
  • [3] Higher-order asymptotics under model misspecification
    Viraswami, K
    Reid, N
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (02): : 263 - 278
  • [4] Asymptotics of the regression quantile basic solution under misspecification
    Keith Knight
    [J]. Applications of Mathematics, 2008, 53 : 223 - 234
  • [5] Asymptotics of the regression quantile basic solution under misspecification
    Knight, Keith
    [J]. APPLICATIONS OF MATHEMATICS, 2008, 53 (03) : 223 - 234
  • [6] BAYESIAN ASYMPTOTICS WITH MISSPECIFIED MODELS
    De Blasi, Pierpaolo
    Walker, Stephen G.
    [J]. STATISTICA SINICA, 2013, 23 (01) : 169 - 187
  • [7] Position Estimation Under Model Misspecification
    Mendrzik, Rico
    Bauch, Gerhard
    [J]. 2017 IEEE 86TH VEHICULAR TECHNOLOGY CONFERENCE (VTC-FALL), 2017,
  • [8] Tapered Covariance: Bayesian Estimation and Asymptotics
    Shaby, Benjamin
    Ruppert, David
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (02) : 433 - 452
  • [9] Asymptotics of Bayesian median loss estimation
    Yu, Chi Wai
    Clarke, Bertrand
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 1950 - 1958
  • [10] Asymptotics for EBLUPs: Nested Error Regression Models
    Lyu, Ziyang
    Welsh, A. H.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2028 - 2042