Characterization of Jordan derivations on J-subspace lattice algebras

被引:4
|
作者
Qi, Xiaofei [1 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
J-subspace lattice algebras; Jordan derivations; derivations; derivable maps; LINEAR INTERPOLATION; REFLEXIVE ALGEBRAS; NEST-ALGEBRAS; OPERATORS; POINTS;
D O I
10.4064/sm210-1-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a J-subspace lattice on a Banach space X and Alg L the associated J-subspace lattice algebra. Assume that delta : Alg L -> Alg L is an additive map. It is shown that delta satisfies delta(AB + BA) = delta(A)B + A delta(B) + delta(B)A + B delta(A) for any A, B is an element of Alg L with AB + BA = 0 if and only if delta(A) = tau(A) + delta(I)A for all A, where tau is an additive derivation; if X is complex with dim X >= 3 and if delta is linear, then delta satisfies delta(AB + BA) = delta(A)B + A delta(B) + delta(B)A + B delta(A) for any A, B is an element of Alg L with AB + BA = I if and only if delta is a derivation.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条