General thermostatistical formalisms based on parameterized entropic measures

被引:3
|
作者
Plastino, AR [1 ]
Miller, HG
Plastino, A [1 ]
机构
[1] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
[2] Univ Illes Balears, Dept Fis, Palma de Mallorca 07071, Spain
[3] UNLP, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Argentina
[4] Consejo Nacl Invest Cient & Tecn, RA-1900 La Plata, Argentina
[5] Natl Univ La Plata, La Plata Phys Inst, RA-1900 La Plata, Argentina
[6] Argentine Natl Res Council CONICET, RA-1900 La Plata, Argentina
关键词
Tsallis entropy; maximum entropy; thermostatistical formalism;
D O I
10.1007/s00161-003-0160-2
中图分类号
O414.1 [热力学];
学科分类号
摘要
We revisit the concept of generalized thermostatistical formalisms, based on extremizing parameterized entropic functionals subject to appropriate constraints, in order to incorporate an (effective) temperature dependence of the entropic parameters and of parameters characterizing the relevant constraints. Our main aim is to investigate what kinds of temperature dependence of these parameters are consistent with the Legendre-transform structure of thermodynamics. After discussing this problem in a qui te general context, we discuss in detail the important particular example of the q-nonextensive thermostatistical formalism with a temperature-dependent q-parameter. In this special case, our general formalism implies extremizing the concomitant entropy functional S-q, subject to the constraints imposed by normalization and the presumably known exp ectation values of N relevant observables, for arbitrary variations of both the statistical operator (rho) over cap and the parameter q. The ensuing extended variational formalism preserves the usual (Legendre-transform) connection with thermodynamics. For sets of relevant observables that close a Lie semi- algebra with the system's Hamiltonian, we study some features of our approach related to the system's dynamics and show that q is a constant of the motion. Our present developments may be useful for the study of systems whose entropic parameter q is unknown.
引用
收藏
页码:269 / 277
页数:9
相关论文
共 50 条
  • [1] General thermostatistical formalisms based on parameterized entropic measures
    A. R. Plastino
    H. G. Miller
    A. Plastino
    Continuum Mechanics and Thermodynamics, 2004, 16 : 269 - 277
  • [2] Eguipartition and virial theorems within general thermostatistical formalisms
    Plastino, AR
    Lima, JAS
    PHYSICS LETTERS A, 1999, 260 (1-2) : 46 - 54
  • [3] Equipartition and virial theorems within general thermostatistical formalisms
    Departament de Física, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 1-2 (46-54):
  • [4] General thermostatistical formalisms, invariance under uniform spectrum translations, and Tsallis q-additivity
    Di Sisto, RP
    Martínez, S
    Orellana, RB
    Plastino, AR
    Plastino, A
    PHYSICA A, 1999, 265 (3-4): : 590 - 613
  • [5] Φ-Entropic Measures of Correlation
    Beigi, Salman
    Gohari, Amin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2193 - 2211
  • [6] Parameterized entanglement measures based on Renyi-α entropy
    Dai Wei-Peng
    He Kan
    Hou Jin-Chuan
    ACTA PHYSICA SINICA, 2024, 73 (04)
  • [7] Security portfolio management based on combined entropic risk measures
    E. M. Bronshtein
    O. V. Kondrat’eva
    Journal of Computer and Systems Sciences International, 2013, 52 : 837 - 841
  • [8] Security portfolio management based on combined entropic risk measures
    Bronshtein, E. M.
    Kondrat'eva, O. V.
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2013, 52 (05) : 837 - 841
  • [9] Entropic methodology for entanglement measures
    Deng, Wei
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 512 : 693 - 697
  • [10] ESTIMATION OF ENTROPIC MEASURES OF ASSOCIATION
    Deignan, Paul B.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 749 - 752