Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps

被引:29
|
作者
Machireddy, Archana [1 ]
Thibault, Guillaume [1 ]
Tudorica, Alina [1 ]
Afzal, Aneela [1 ]
Mishal, May [1 ]
Kemmer, Kathleen [1 ]
Naik, Arpana [1 ]
Troxell, Megan [1 ]
Goranson, Eric [1 ]
Oh, Karen [1 ]
Roy, Nicole [1 ]
Jafarian, Neda [1 ]
Holtorf, Megan [1 ]
Huang, Wei [1 ]
Song, Xubo [1 ]
机构
[1] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
基金
美国国家卫生研究院;
关键词
breast cancer; DCE-MRI; neoadjuvant chemotherapy; early prediction; multiresolution fractal analysis; CONTRAST-ENHANCED MRI; PATHOLOGICAL COMPLETE RESPONSE; NEOADJUVANT CHEMOTHERAPY; SPATIAL HETEROGENEITY; TEXTURE ANALYSIS; SURVIVAL; FEATURES;
D O I
10.18383/j.tom.2018.00046
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We aimed to determine whether multiresolution fractal analysis of voxel-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parametric maps can provide early prediction of breast cancer response to neoadjuvant chemotherapy (NACT). In total, 55 patients underwent 4 DCE-MRI examinations before, during, and after NACT. The shutter-speed model was used to analyze the DCE-MRI data and generate parametric maps within the tumor region of interest. The proposed multiresolution fractal method and the more conventional methods of single-resolution fractal, gray-level co-occurrence matrix, and run-length matrix were used to extract features from the parametric maps. Only the data obtained before and after the first NACT cycle were used to evaluate early prediction of response. With a training (N = 40) and testing (N = 15) data set, support vector machine was used to assess the predictive abilities of the features in classification of pathologic complete response versus non-pathologic complete response. Generally the multiresolution fractal features from individual maps and the concatenated features from all parametric maps showed better predictive performances than conventional features, with receiver operating curve area under the curve (AUC) values of 0.91 (all parameters) and 0.80 (K-trans), in the training and testing sets, respectively. The differences in AUC were statistically significant (P < .05) for several parametric maps. Thus, multiresolution analysis that decomposes the texture at various spatial-frequency scales may more accurately capture changes in tumor vascular heterogeneity as measured by DCE-MRI, and therefore provide better early prediction of NACT response.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [1] Analysis of DCE-MRI for Early Prediction of Breast Cancer Therapy Response
    Machireddy, Archana
    Thibault, Guillaume
    Huang, Wei
    Song, Xubo
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 682 - 685
  • [2] DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response
    Thibault, Guillaume
    Tudorica, Alina
    Afzal, Aneela
    Chui, Stephen Y-C
    Naik, Arpana
    Troxell, Megan L.
    Kemmer, Kathleen A.
    Oh, Karen Y.
    Roy, Nicole
    Jafarian, Neda
    Holtorf, Megan L.
    Huang, Wei
    Song, Xubo
    [J]. TOMOGRAPHY, 2017, 3 (01) : 23 - 32
  • [3] Early Prediction and Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Using Quantitative DCE-MRI
    Tudorica, Alina
    Oh, Karen Y.
    Chui, Stephen Y-C
    Roy, Nicole
    Troxell, Megan L.
    Naik, Arpana
    Kemmer, Kathleen A.
    Chen, Yiyi
    Holtorf, Megan L.
    Afzal, Aneela
    Springer, Charles S., Jr.
    Li, Xin
    Huang, Wei
    [J]. TRANSLATIONAL ONCOLOGY, 2016, 9 (01): : 8 - 17
  • [4] Heterogeneity in DCE-MRI parametric maps: a biomarker for treatment response?
    Alic, L.
    van Vliet, M.
    van Dijke, C. F.
    Eggermont, A. M. M.
    Veenland, J. F.
    Niessen, W. J.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (06): : 1601 - 1616
  • [5] Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients
    Fan, Ming
    Wu, Guolin
    Cheng, Hu
    Zhang, Juan
    Shao, Guoliang
    Li, Lihua
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2017, 94 : 140 - 147
  • [6] DCE-MRI for early prediction of excellent response versus chemoresistance in triple negative breast cancer
    Guirguis, Mary S.
    Adrada, Beatriz
    Patel, Miral
    Perez, Frances
    Candelaria, Rosalind
    Yang, Wei
    Sun, Jia
    Mohamed, Rania M.
    Boge, Medine
    Le-Petross, H. T. Carisa
    Leung, Jessica
    Whitman, Gary J.
    Lane, Deanna L.
    Scoggins, Marion E.
    Moseley, Tanya
    Musall, Benjamin
    White, Jason
    Pashapoor, Sanaz
    Wei, Peng
    Son, Jong Bum
    Hwang, Ken-Pin
    Panthi, Bikash
    Pagel, Mark
    Huo, Lei
    Hunt, Kelly K.
    Ravenberg, Elizabeth
    Thompson, Alastair M.
    Litton, Jennifer K.
    Valero, Vicente
    Tripathy, Debu
    Moulder, Stacy
    Yam, Clinton
    Ma, Jingfei
    Rauch, Gaiane
    [J]. CANCER RESEARCH, 2023, 83 (05)
  • [7] Radiomic phenotypes from dynamic contrast-enhanced MRI (DCE-MRI) parametric maps for early prediction of response to neoadjuvant systemic therapy (NAST) in triple negative breast cancer (TNBC) patients
    Elshafeey, Nabil
    Adrada, Beatriz E.
    Candelaria, Rosalind P.
    Abdelhafez, Abeer H.
    Musall, Benjamin C.
    Sun, Jia
    Boge, Medine
    Mohamed, Rania M. M.
    Mahmoud, Hagar S.
    Son, Jong Bum
    Kotrosou, Aikaterini
    Zhang, Shu
    Leung, Jessica
    Lane, Deanna
    Scoggins, Marion
    Spak, David
    Arribas, Elsa
    Santiago, Lumarie
    Whitman, Gary J.
    Le-Petross, Huong T.
    Moseley, Tanya W.
    White, Jason B.
    Ravenberg, Elizabeth
    Hwang, Ken-Pin
    Wei, Peng
    Litton, Jennifer K.
    Huo, Lei
    Tripathy, Debu
    Valero, Vicente
    Thompson, Alastair M.
    Moulder, Stacy
    Yang, Wei T.
    Pagel, Mark D.
    Ma, Jingfei
    Rauch, Gaiane M.
    [J]. CANCER RESEARCH, 2021, 81 (04)
  • [8] Analysis of DCE-MRI Features in Tumor for Prediction of the Prognosis in Breast Cancer
    Liu, Bin
    Fan, Ming
    Zheng, Shuo
    Li, Lihua
    [J]. MEDICAL IMAGING 2019: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2019, 10954
  • [9] A Multiresolution Analysis Framework For Breast Tumor Classification Based On DCE-MRI
    Tzalavra, Alexia G.
    Zacharaki, Evangelia I.
    Tsiaparas, Nikolaos N.
    Constantinidis, Fotios
    Nikita, Konstantina S.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST), 2014, : 246 - 250
  • [10] Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer
    Zeng, Qiao
    Xiong, Fei
    Liu, Lan
    Zhong, Linhua
    Cai, Fengqin
    Zeng, Xianjun
    [J]. ACADEMIC RADIOLOGY, 2023, 30 : S38 - S49