Learning Bayesian network parameters under new monotonic constraints

被引:2
|
作者
Di, Ruohai [1 ]
Gao, Xiaoguang [1 ]
Guo, Zhigao [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian networks; parameter learning; new monotonic constraint; RECOGNITION;
D O I
10.21629/JSEE.2017.06.22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When the training data are insufficient, especially when only a small sample size of data is available, domain knowledge will be taken into the process of learning parameters to improve the performance of the Bayesian networks. In this paper, a new monotonic constraint model is proposed to represent a type of common domain knowledge. And then, the monotonic constraint estimation algorithm is proposed to learn the parameters with the monotonic constraint model. In order to demonstrate the superiority of the proposed algorithm, series of experiments are carried out. The experiment results show that the proposed algorithm is able to obtain more accurate parameters compared to some existing algorithms while the complexity is not the highest.
引用
收藏
页码:1248 / 1255
页数:8
相关论文
共 50 条
  • [1] Learning Bayesian network parameters under new monotonic constraints
    Ruohai Di
    Xiaoguang Gao
    Zhigao Guo
    [J]. Journal of Systems Engineering and Electronics, 2017, 28 (06) : 1248 - 1255
  • [2] Learning Bayesian network parameters under order constraints
    Feelders, A
    van der Gaag, LC
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2006, 42 (1-2) : 37 - 53
  • [3] Learning Bayesian network parameters under equivalence constraints
    Yao, Tiansheng
    Choi, Arthur
    Darwiche, Adnan
    [J]. ARTIFICIAL INTELLIGENCE, 2017, 244 : 239 - 257
  • [4] An empirical study of Bayesian network parameter learning with monotonic influence constraints
    Zhou, Yun
    Fenton, Norman
    Zhu, Cheng
    [J]. DECISION SUPPORT SYSTEMS, 2016, 87 : 69 - 79
  • [5] Learning Bayesian network parameters under dual constraints from small data set
    Guo, Zhi-Gao
    Gao, Xiao-Guang
    Di, Ruo-Hai
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2014, 40 (07): : 1509 - 1516
  • [6] Learning Bayesian network parameters with soft-hard constraints
    Xinxin Ru
    Xiaoguang Gao
    Yangyang Wang
    Xiaohan Liu
    [J]. Neural Computing and Applications, 2022, 34 : 18195 - 18209
  • [7] Learning Bayesian network parameters with soft-hard constraints
    Ru, Xinxin
    Gao, Xiaoguang
    Wang, Yangyang
    Liu, Xiaohan
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (20): : 18195 - 18209
  • [8] Learning Bayesian Network Parameters With Small Data Set: A Parameter Extension under Constraints Method
    Hou, Yongyan
    Zheng, Enrang
    Guo, Wenqiang
    Xiao, Qinkun
    Xu, Ziwei
    [J]. IEEE ACCESS, 2020, 8 (08): : 24979 - 24989
  • [9] Parameter Learning of Bayesian Network Classifiers Under Computational Constraints
    Tschiatschek, Sebastian
    Pernkopf, Franz
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT I, 2015, 9284 : 86 - 101
  • [10] A New Hybrid Method for Bayesian Network Learning With Dependency Constraints
    Schulte, Oliver
    Frigo, Gustavo
    Greiner, Russell
    Luo, Wei
    Khosravi, Hassan
    [J]. 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 53 - 60