A study on subarcsecond scales of the ammonia and continuum emission toward the G16.59-0.05 high-mass star-forming region

被引:17
|
作者
Moscadelli, L. [1 ]
Cesaroni, R. [1 ]
Sanchez-Monge, A. [1 ]
Goddi, C. [2 ]
Furuya, R. S. [3 ]
Sanna, A. [4 ]
Pestalozzi, M. [5 ]
机构
[1] Osserv Astrofis Arcetri, INAF, I-50125 Florence, Italy
[2] Joint Inst VLBI Europe, NL-7990 AA Dwingeloo, Netherlands
[3] Univ Tokushima, Tokushima 7708502, Japan
[4] Max Planck Inst Radioastron, D-53121 Bonn, Germany
[5] Ist Fis Spazio Interplanetario, INAF, I-00133 Rome, Italy
基金
欧洲研究理事会;
关键词
techniques: interferometric; ISM: jets and outflows; ISM: molecules; radio continuum: ISM; infrared: ISM; FREE-FREE RADIATION; DUST CONTINUUM; GALACTIC PLANE; KINEMATICS; ACCRETION; COMPLEX; JET; PROTOSTARS; OUTFLOWS; DISK;
D O I
10.1051/0004-6361/201321951
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We wish to investigate the structure, velocity field, and stellar content of the G16.59-0.05 high-mass star-forming region, where previous studies have established the presence of two almost perpendicular (NE-SW and SE-NW), massive outflows, and a rotating disk traced by methanol maser emission. Methods. We performed Very Large Array observations of the radio continuum and ammonia line emission, complemented by COMICS/Subaru and Hi-GAL/Herschel images in the mid- and far-infrared. Results. Our centimeter continuum maps reveal a collimated radio jet that is oriented E-W and centered on the methanol maser disk, placed at the SE border of a compact molecular core. The spectral index of the jet is negative, indicating non-thermal emission over most of the jet, except the peak close to the maser disk, where thermal free-free emission is observed. We find that the ammonia emission presents a bipolar structure consistent (on a smaller scale) in direction and velocity with that of the NE-SW bipolar outflow detected in previous CO observations. After analyzing our previous N2H+(1-0) observations again, we conclude that two scenarios are possible. In one case both the radio jet and the ammonia emission would trace the root of the large-scale CO bipolar outflow. The different orientation of the jet and the ammonia flow could be explained by precession and/or a non-isotropic density distribution around the star. In the other case, the N2H+(1-0) and ammonia bipolarity is interpreted as two overlapping clumps moving with different velocities along the line of sight. The ammonia gas also seems to undergo rotation consistent with the maser disk. Our infrared images complemented by archival data allow us to derive a bolometric luminosity of similar to 10(4) L-circle dot and to conclude that most of the luminosity is due to the young stellar object associated with the maser disk. Conclusions. The new data suggest a scenario where the luminosity and the outflow activity of the whole region could be dominated by two massive young stellar objects: 1) a B-type star of similar to 12 M-circle dot at the center of the maser/ammonia disk; 2) a massive young stellar object (so far undetected), very likely in an earlier stage of evolution than the B-type star, which might be embedded inside the compact molecular core and power the massive, SE-NW outflow.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] SUBARCSECOND IMAGING OF THE HIGH-MASS STAR-FORMING REGION ONSALA 1
    Su, Yu-Nung
    Liu, Sheng-Yuan
    Lim, Jeremy
    ASTROPHYSICAL JOURNAL, 2009, 698 (02): : 1981 - 1988
  • [2] Ionization toward the high-mass star-forming region NGC 6334 I
    Ortiz, Jorge L. Morales
    Ceccarelli, Cecilia
    Lis, Dariusz C.
    Olmi, Luca
    Plume, Rene
    Schilke, Peter
    ASTRONOMY & ASTROPHYSICS, 2014, 563
  • [3] Neutral Stellar Winds toward the High-mass Star-forming Region G176.51+00.20
    Li, Yingjie
    Xu, Ye
    Xu, Jin-Long
    Liu, Dejian
    Li, Jingjing
    Lin, Zehao
    Jiang, Peng
    Bian, Shuaibo
    Hao, Chaojie
    Chen, Xiuhui
    ASTROPHYSICAL JOURNAL, 2022, 935 (02):
  • [4] Interferometric Observations of Cyanopolyynes toward the G28.28-0.36 High-mass Star-forming Region
    Taniguchi, Kotomi
    Miyamoto, Yusuke
    Saito, Masao
    Sanhueza, Patricio
    Shimoikura, Tomomi
    Dobashi, Kazuhito
    Nakamura, Fumitaka
    Ozeki, Hiroyuki
    ASTROPHYSICAL JOURNAL, 2018, 866 (01):
  • [5] APEX Millimeter Observations of Methanol Emission Toward High-mass Star-forming Cores
    Hernandez-Hernandez, Vicente
    Kurtz, Stan
    Kalenskii, Sergei
    Golysheva, Polina
    Garay, Guido
    Zapata, Luis
    Bergman, Per
    ASTRONOMICAL JOURNAL, 2019, 158 (01):
  • [6] An Isothermal Outflow in High-mass Star-forming Region G240.31+0.07
    Liu, Junhao
    Qiu, Keping
    Wyrowski, Friedrich
    Menten, Karl
    Guesten, Rolf
    Cao, Yue
    Wang, Yuwei
    ASTROPHYSICAL JOURNAL, 2018, 860 (02):
  • [7] A Hi-GAL study of the high-mass star-forming region G29.96-0.02
    Beltran, M. T.
    Olmi, L.
    Cesaroni, R.
    Schisano, E.
    Elia, D.
    Molinari, S.
    Di Giorgio, A. M.
    Kirk, J. M.
    Mottram, J. C.
    Pestalozzi, M.
    Testi, L.
    Thompson, M. A.
    ASTRONOMY & ASTROPHYSICS, 2013, 552
  • [8] A methanol line survey toward high-mass star-forming regions
    Minier, V
    Booth, RS
    ASTRONOMY & ASTROPHYSICS, 2002, 387 (01) : 179 - 186
  • [9] Modeling the water line emission from the high-mass star-forming region AFGL 2591
    Poelman, D. R.
    van der Tak, F. F. S.
    ASTRONOMY & ASTROPHYSICS, 2007, 475 (03) : 949 - 958
  • [10] Water emission from the high-mass star-forming region IRAS 17233-3606
    Leurini, S.
    Gusdorf, A.
    Wyrowski, F.
    Codella, C.
    Csengeri, T.
    van der Tak, F.
    Beuther, H.
    Flower, D. R.
    Comito, C.
    Schilke, P.
    ASTRONOMY & ASTROPHYSICS, 2014, 564