Self-heating co-pyrolysis of excessive activated sludge with waste biomass: Energy balance and sludge reduction

被引:97
|
作者
Ding, Hong-Sheng [1 ]
Jiang, Hong [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Co-pyrolysis; Sludge; Biomass; Self heating; Sludge reduction; SEWAGE-SLUDGE; KINETICS;
D O I
10.1016/j.biortech.2013.01.090
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this work, co-pyrolysis of sludge with sawdust or rice husk was investigated. The results showed that the co-pyrolysis technology could be used to dispose of the excessive activated sludge without external energy input. The results also demonstrated that no obvious synergistic effect occurred except for heat transfer in the co-pyrolysis if the co-feeding biomass and sludge had similar thermogravimetric characteristics. The experimental results combined with calculation showed that adding sawdust accounting for 49.6% of the total feedstock or rice husk accounting for 74.7% could produce bio-oil to keep the energy balance of the co-pyrolysis system and self-heat it. The sludge from solar drying bed can be further reduced by 38.6% and 35.1% by weight when co-pyrolyzed with rice husk and sawdust, respectively. This study indicates that sludge reduction without external heat supply through co-pyrolysis of sludge with waste biomass is practically feasible. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 50 条
  • [1] Co-pyrolysis of municipal solid waste (MSW) and biomass with Co/sludge fly ash catalyst
    Gao, Ningbo
    Milandile, Mwenya Humphrey
    Sipra, Ayesha Tariq
    Su, Sheng
    Miskolczi, Norbert
    Quan, Cui
    FUEL, 2022, 322
  • [2] Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology
    Hu, Guangji
    Li, Jianbing
    Zhang, Xinying
    Li, Yubao
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 192 : 234 - 242
  • [3] Microwave co-pyrolysis of industrial sludge and waste biomass: Product valorization and synergistic mechanisms
    Liu, Yang
    Siyal, Asif Ali
    Zhou, Chunbao
    Liu, Chenglong
    Fu, Jie
    Zhang, Yingwen
    Yao, Bang
    Chao, Li
    Yun, Huimin
    Dai, Jianjun
    Bi, Xiaotao
    CHEMICAL ENGINEERING JOURNAL, 2024, 485
  • [4] Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures
    Storm, C
    Rüdiger, H
    Spliethoff, H
    Hein, KRG
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 1999, 121 (01): : 55 - 63
  • [5] Co-pyrolysis development of waste tire-sludge adsorbent by mixed of waste tires and oily sludge
    Tang, Chao
    Guan, Jiaojiao
    Xie, Shuixiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Advantages of Co-Pyrolysis of Sewage Sludge with Agricultural and Forestry Waste
    Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Sloneczna St. 45G, Olsztyn
    10-709, Poland
    Energies, 2024, 22
  • [7] Co-pyrolysis re-use of sludge and biomass waste: Development, kinetics, synergistic mechanism and industrialization
    Ma, Mingyan
    Xu, Donghai
    Zhi, Youwei
    Yang, Wanpeng
    Duan, Peigao
    Wu, Zhiqiang
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 168
  • [8] Co-Pyrolysis of Sewage Sludge and Wetland Biomass Waste for Biochar Production: Behaviors of Phosphorus and Heavy Metals
    Gbouri, Ilham
    Yu, Fan
    Wang, Xutong
    Wang, Junxia
    Cui, Xiaoqiang
    Hu, Yanjun
    Yan, Beibei
    Chen, Guanyi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (05)
  • [9] Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste
    Fang, Shiwen
    Yu, Zhaosheng
    Lin, Yousheng
    Hu, Shanchao
    Liao, Yanfen
    Ma, Xiaoqian
    ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 626 - 631
  • [10] Stabilization of heavy metals during co-pyrolysis of sewage sludge and excavated waste
    Chen, Guanyi
    Tian, Shu
    Liu, Bin
    Hu, Mingtao
    Ma, Wenchao
    Li, Xiangping
    WASTE MANAGEMENT, 2020, 103 : 268 - 275