Multiobjective Differential Evolution Algorithm with Opposition-Based Parameter Control

被引:0
|
作者
Leung, Shing Wa [1 ]
Zhang, Xin [1 ]
Yuen, Shiu Yin [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multiobjective evolutionary algorithms (MOEAs) often have several control parameters, and their performance is highly related to the parameters. A proper set of parameter values is useful for MOEAs in a particular application. This paper addresses the parameter control problem. Inspired by the observations in differential evolution (DE), we proposed a parameter control system using opposition-based learning (OBL). The proposed method contains three conditions which characterize the state of parameters at different evolutionary stages. It keeps good parameters for the current search stage. In case the parameters are bad, it uses OBL to accelerate the finding of good ones. The method is applied to a newly proposed multiobjective DE algorithm (MODEA) which does not control parameters. The resulting algorithm is tested on CEC 2009 test suite comparing with two other recently proposed MOEAs, namely GDE3 and MOEA/D. Experimental results show that the proposed method can significantly improve the performance of MODEA. Moreover, the resulting algorithm significantly outperforms GDE3 and MOEA/D.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Opposition-based learning in the shuffled differential evolution algorithm
    Morteza Alinia Ahandani
    Hosein Alavi-Rad
    [J]. Soft Computing, 2012, 16 : 1303 - 1337
  • [2] Opposition-based learning in the shuffled differential evolution algorithm
    Ahandani, Morteza Alinia
    Alavi-Rad, Hosein
    [J]. SOFT COMPUTING, 2012, 16 (08) : 1303 - 1337
  • [3] Opposition-based differential evolution
    Rahnamayan, Shahryar
    Tizhoosh, Hamid R.
    Salama, Magdy M. A.
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (01) : 64 - 79
  • [4] Opposition-based learning in the shuffled bidirectional differential evolution algorithm
    Ahandani, Morteza Alinia
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2016, 26 : 64 - 85
  • [5] Generalised opposition-based differential evolution for frequency modulation parameter optimisation
    Wang, Hui
    Wang, Wenjun
    Zhu, Huasheng
    Sun, Hui
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (04) : 372 - 379
  • [6] Centroid Opposition-Based Differential Evolution
    Rahnamayan, Shahryar
    Jesuthasan, Jude
    Bourennani, Farid
    Naterer, Greg F.
    Salehinejad, Hojjat
    [J]. INTERNATIONAL JOURNAL OF APPLIED METAHEURISTIC COMPUTING, 2014, 5 (04) : 1 - 25
  • [7] Opposition-Based Adaptive Differential Evolution
    Zhang, Xin
    Yuen, Shiu Yin
    [J]. 2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] Opposition-based differential evolution algorithms
    Rahnamayan, Shahryar
    Tizhoosh, Hamid R.
    Salama, Magdy M. A.
    [J]. 2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1995 - +
  • [9] Hybrid Differential Evolution Algorithm with Chaos and Generalized Opposition-Based Learning
    Wang, Jing
    Wu, Zhijian
    Wang, Hui
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 103 - 111
  • [10] An Opposition-based Modified Differential Evolution Algorithm for Numerical Optimization Problems
    Xia, Honggang
    Wang, Qingzhou
    [J]. AUTOMATIC CONTROL AND MECHATRONIC ENGINEERING II, 2013, 415 : 309 - +