Scale-free relaxation of a wave packet in a quantum well with power-law tails

被引:5
|
作者
Micciche, Salvatore [1 ]
Buchleitner, Andreas [2 ]
Lillo, Fabrizio [1 ,3 ,4 ]
Mantegna, Rosario N. [1 ]
Paul, Tobias [5 ,6 ]
Wimberger, Sandro [5 ,6 ]
机构
[1] Univ Palermo, Dipartimento Fis, I-90128 Palermo, Italy
[2] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[3] Santa Fe Inst, Santa Fe, NM 87501 USA
[4] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[5] Heidelberg Univ, Inst Theoret Phys, D-69120 Heidelberg, Germany
[6] Heidelberg Univ, Ctr Quantum Dynam, D-69120 Heidelberg, Germany
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
关键词
ANDERSON LOCALIZATION; ANOMALOUS DIFFUSION; ATOM; MECHANICS; DYNAMICS; WALKS;
D O I
10.1088/1367-2630/15/3/033033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a setup for which a power-law decay is predicted to be observable for generic and realistic conditions. The system we study is very simple: a quantum wave packet initially prepared in a potential well with (i) tails asymptotically decaying like similar to x(-2) and (ii) an eigenvalues spectrum that shows a continuous part attached to the ground or equilibrium state. We analytically derive the asymptotic decay law from the spectral properties for generic, confined initial states. Our findings are supported by realistic numerical simulations for state-of-the-art expansion experiments with cold atoms.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Scale-Free Structure for Power-Law Graphs
    Veras, Richard
    Low, Tze Meng
    Franchetti, Franz
    [J]. 2016 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2016,
  • [2] Power-law citation distributions are not scale-free
    Golosovsky, Michael
    [J]. PHYSICAL REVIEW E, 2017, 96 (03)
  • [3] Scale-free networks beyond power-law degree distribution
    Meng, Xiangyi
    Zhou, Bin
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 176
  • [4] Weighted scale-free networks with variable power-law exponents
    Tanaka, Takurna
    Aoyagi, Toshio
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (07) : 898 - 907
  • [5] Scale-free networks with the power-law exponent between 1 and 3
    Guo Jin-Li
    Wang Li-Na
    [J]. ACTA PHYSICA SINICA, 2007, 56 (10) : 5635 - 5639
  • [6] Complex scale-free networks with tunable power-law exponent and clustering
    Colman, E. R.
    Rodgers, G. J.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (21) : 5501 - 5510
  • [7] Mobile user forecast and power-law acceleration invariance of scale-free networks
    郭进利
    郭曌华
    刘雪娇
    [J]. Chinese Physics B, 2011, 20 (11) : 548 - 555
  • [8] Giant component sizes in scale-free networks with power-law degrees and cutoffs
    Janssen, A. J. E. M.
    van Leeuwaarden, J. S. H.
    [J]. EPL, 2015, 112 (06)
  • [9] Onset of power-law scaling behavior in idiotypic random and scale-free networks
    Claudino, Elder S.
    Lyra, M. L.
    Gleria, Iram
    Campos, Paulo R. A.
    Bertrand, Delvis
    [J]. PHYSICS LETTERS A, 2012, 376 (45) : 3158 - 3163
  • [10] Mobile user forecast and power-law acceleration invariance of scale-free networks
    Guo Jin-Li
    Guo Zhao-Hua
    Liu Xue-Jiao
    [J]. CHINESE PHYSICS B, 2011, 20 (11)