Interpolation of Missing Data in Sensor Networks Using Nonnegative Matrix Factorization

被引:2
|
作者
Suyama, Takayuki [1 ]
Kishino, Yasue [1 ]
Shirai, Yoshinari [1 ]
Mizutani, Shin [1 ]
Sawada, Hiroshi [1 ]
机构
[1] NTT Commun Sci Labs, 2-4 Hikaridai, Seika, Kyoto 6190237, Japan
关键词
Sensor networks; Interpolation; Nonnegative Matrix Factorization;
D O I
10.1145/3267305.3267585
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a method that interpolates missing values from sensor nodes in a sensor network using Nonnegative Matrix Factorization. Since nearby sensor nodes take approximate values, more reliable interpolation is possible with these values. We carried out experiments and evaluations using the data of sensors deployed in a real environment.
引用
收藏
页码:263 / 266
页数:4
相关论文
共 50 条
  • [1] CONVEX NONNEGATIVE MATRIX FACTORIZATION WITH MISSING DATA
    Hamon, Ronan
    Emiya, Valentin
    Fevotte, Cedric
    [J]. 2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [2] Missing Spectrum-Data Recovery in Cognitive Radio Networks Using Piecewise Constant Nonnegative Matrix Factorization
    Zaeemzadeh, Alireza
    Joneidi, Mohsen
    Shahrasbi, Behzad
    Rahnavard, Nazanin
    [J]. 2015 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2015), 2015, : 238 - 243
  • [3] Semi-Nonnegative Matrix Factorization for Motion Segmentation with Missing Data
    Mo, Quanyi
    Draper, Bruce A.
    [J]. COMPUTER VISION - ECCV 2012, PT VII, 2012, 7578 : 402 - 415
  • [4] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    [J]. 2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [5] Clustering Data using a Nonnegative Matrix Factorization (NMF)
    Abdulla, Hussam Dahwa
    Polovincak, Martin
    Snasel, Vaclav
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES (ICADIWT 2009), 2009, : 749 - 752
  • [6] Immersive visualization of visual data using nonnegative matrix factorization
    Babaee, Mohammadreza
    Tsoukalas, Stefanos
    Rigoll, Gerhard
    Datcu, Mihai
    [J]. NEUROCOMPUTING, 2016, 173 : 245 - 255
  • [7] Nonnegative Matrix Factorization Using Nonnegative Polynomial Approximations
    Debals, Otto
    Van Barel, Marc
    De Lathauwer, Lieven
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (07) : 948 - 952
  • [8] Community Detection in Temporal Networks Using Triple Nonnegative Matrix Factorization
    Liu, Hai-fu
    Yuan, Li-meng-zi
    [J]. INTERNATIONAL CONFERENCE ON MATHEMATICS, MODELLING AND SIMULATION TECHNOLOGIES AND APPLICATIONS (MMSTA 2017), 2017, 215 : 499 - 505
  • [9] A Survey of Community Detection in Complex Networks Using Nonnegative Matrix Factorization
    He, Chaobo
    Fei, Xiang
    Cheng, Qiwei
    Li, Hanchao
    Hu, Zeng
    Tang, Yong
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2022, 9 (02) : 440 - 457
  • [10] Nonnegative Matrix Factorization for Signal and Data Analytics
    Fu, Xiao
    Huang, Kejun
    Sidiropoulos, Nicholas D.
    Ma, Wing-Kin
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (02) : 59 - 80