Strichartz Estimates for the Wave Equation on Flat Cones

被引:16
|
作者
Blair, Matthew D. [1 ]
Ford, G. Austin [2 ]
Marzuola, Jeremy L. [3 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[3] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
EXISTENCE;
D O I
10.1093/imrn/rns002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the solution operator for the wave equation on the flat Euclidean cone over the circle of radius, p > 0, the manifold R+ x (R/2pZ) equipped with the metric g(r,theta)=dr(2)+r(2) d theta(2). Using explicit representations of the solution operator in regions related to flat wave propagation and diffraction by the cone point, we prove dispersive estimates and hence scale invariant Strichartz estimates for the wave equation on flat cones. We then show that this yields corresponding inequalities on polygons and Euclidean surfaces with conic singularities. This in turn yields well-posedness results for the nonlinear wave equation on such manifolds. Morawetz estimates on the cone are also treated.
引用
收藏
页码:562 / 591
页数:30
相关论文
共 50 条