Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities

被引:33
|
作者
Canino, A. [1 ]
Grandinetti, M. [1 ]
Sciunzi, B. [1 ]
机构
[1] UNICAL, Dipartimento Matemat, I-87036 Cosenza, Italy
关键词
Singular semilinear equations; Symmetry of solutions; Moving plane method; ASYMPTOTIC SYMMETRY; POSITIVE SOLUTIONS; CLASSIFICATION; EXISTENCE; BEHAVIOR;
D O I
10.1016/j.jde.2013.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider positive solutions to the singular semilinear elliptic equation -Delta u = 1/u(gamma) + f (u), in bounded smooth domains, with zero Dirichlet boundary conditions. We provide some weak and strong maximum principles for the H-0(1)(Omega) part of the solution (the solution u generally does not belong to H-0(1)(Omega)), that allow to deduce symmetry and monotonicity properties of solutions, via the Moving Plane Method. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4437 / 4447
页数:11
相关论文
共 50 条