Modelling precipitation in Sweden using multiple step markov chains and a composite model

被引:44
|
作者
Lennartsson, Jan [1 ]
Baxevani, Anastassia [1 ]
Chen, Deliang [2 ]
机构
[1] Univ Gothenburg, Chalmers Univ Technol, Dept Math Sci, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Dept Earth Sci, Gothenburg, Sweden
关键词
High order Markov chain; Generalized Pareto distribution; Copula; Precipitation process; Sweden;
D O I
10.1016/j.jhydrol.2008.10.003
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, we propose anew method for modelling precipitation in Sweden. We consider a chain dependent stochastic model that consists of a component that models the probability of occurrence of precipitation at a weather station and a component that models the amount of precipitation at the station when precipitation does occur. For the first component, we show that for most of the weather stations in Sweden a Markov chain of an order higher than one is required. For the second component, which is a Gaussian process with transformed marginals, we use a composite of the empirical distribution of the amount of precipitation below a given threshold and the generalized Pareto distribution for the excesses in the amount of precipitation above the given threshold. The derived models are then used to compute different weather indices. The distribution of the modelled indices and the empirical ones show good agreement, which supports the choice of the model. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 59
页数:18
相关论文
共 50 条
  • [1] Modelling the Strength and Fatigue Life of a Unidirectional Fibrous Composite by Using Daniels’ Sequence and Markov Chains
    Yu. Paramonov
    V. Cimanis
    S. Varickis
    M. Kleinhofs
    [J]. Mechanics of Composite Materials, 2013, 49 : 551 - 562
  • [2] Modelling the Strength and Fatigue Life of a Unidirectional Fibrous Composite by Using Daniels' Sequence and Markov Chains
    Paramonov, Yu.
    Cimanis, V.
    Varickis, S.
    Kleinhofs, M.
    [J]. MECHANICS OF COMPOSITE MATERIALS, 2013, 49 (05) : 551 - 562
  • [3] Modelling systems of reservoirs using structured Markov Chains
    Piantadosi, J.
    Howlett, P. G.
    Bean, N. G.
    Beecham, S.
    [J]. PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-WATER MANAGEMENT, 2010, 163 (08) : 407 - 416
  • [4] Modelling of forest stand dynamics using Markov chains
    Strigul, Nikolay
    Florescu, Ionut
    Welden, Alicia R.
    Michalczewski, Fabian
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 31 : 64 - 75
  • [5] Multiple Model-Based Control Using Finite Controlled Markov Chains
    Enso Ikonen
    Kaddour Najim
    [J]. Cognitive Computation, 2009, 1 : 234 - 243
  • [6] Multiple Model-Based Control Using Finite Controlled Markov Chains
    Ikonen, Enso
    Najim, Kaddour
    [J]. COGNITIVE COMPUTATION, 2009, 1 (03) : 234 - 243
  • [7] A TW approach to MPEG traffic modelling using Markov chains
    Quinteiro, JM
    Santana, A
    Sánchez, P
    González, JJ
    Rodríguez, GH
    Rosales, MP
    [J]. PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INTERNET, AND INFORMATION TECHNOLOGY, 2002, : 105 - 110
  • [8] Space-time modelling of precipitation by using a hidden Markov model and censored Gaussian distributions
    Ailliot, Pierre
    Thompson, Craig
    Thomson, Peter
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2009, 58 : 405 - 426
  • [9] A Markov multiple state model for epidemic and insurance modelling
    Tran, Minh-Hoang
    [J]. ASTIN BULLETIN-THE JOURNAL OF THE INTERNATIONAL ACTUARIAL ASSOCIATION, 2024, 54 (02) : 360 - 384
  • [10] MODELLING STOCK RETURNS ON ZAGREB STOCK EXCHANGE BY USING MARKOV CHAINS
    Skrinjaric, Tihana
    Kojic, Vedran
    [J]. EKONOMSKI PREGLED, 2014, 65 (03): : 207 - 221