Aqueous CO2 gradients for air-sea flux estimates

被引:51
|
作者
McGillis, WR
Wanninkhof, R [1 ]
机构
[1] NOAA, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA
[2] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA
[3] Columbia Univ, Lamont Doherty Geol Observ, Palisades, NY 10964 USA
基金
美国国家科学基金会;
关键词
chemical oceanography; carbon system; partial pressure; fugacity; aqueous concentration; air water gas transfer;
D O I
10.1016/j.marchem.2005.09.003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concentration of gaseous carbon dioxide (CO2) in surface seawater is a fundamental control on the CO2 flux between the ocean and atmosphere. However, the concentration gradient in the aqueous mass boundary layer determines the magnitude and direction of the flux. The gradients Of CO2 in the aqueous mass boundary layer cannot be measured directly and are usually inferred from partial pressures or fugacities Of CO2 (f(CO2)) in the air and water, In addition to the f(CO2), the temperatures at the top and bottom of the aqueous mass boundary layer must be known to determine the thermodynamic driving force Of CO2 gas transfer. Expressing the gradient in terms of the aqueous CO2 concentration, [CO2aq], also avoids some conceptual ambiguities. In particular, expressing the CO2 as a fugacity, which is defined relative to the gas phase, when the gas exchange rate is controlled in the aqueous mass boundary layer often leads to errors in interpretation with respect to changes in boundary layer temperature. As a result the enhanced CO2 flux caused by the cool skin effect appears, to be overestimated. Apart from the difficulties estimating the temperature at the top and bottom or the aqueous mass boundary layer, the temperature dependence of solubility and fugacity Of CO2 is uncertain to the degree that it can bias air-sea CO2 flux estimates. The CO2aq at the surface, [CO2aq0], is at equilibrium with the atmospheric CO2 level, As [CO2aqo] is strongly temperature dependent, it will be significantly higher at high latitude compared to low latitude, while atmospheric CO, levels show much less of a gradient. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 108
页数:9
相关论文
共 50 条
  • [1] Update on the Temperature Corrections of Global Air-Sea CO2 Flux Estimates
    Dong, Yuanxu
    Bakker, Dorothee C. E.
    Bell, Thomas G.
    Huang, Boyin
    Landschutzer, Peter
    Liss, Peter S.
    Yang, Mingxi
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2022, 36 (09)
  • [2] Possible consequences of the chemical enhancement effect for air-sea CO2 flux estimates
    Boutin, J
    Etcheto, J
    Ciais, P
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART B-HYDROLOGY OCEANS AND ATMOSPHERE, 1999, 24 (05): : 411 - 416
  • [3] Mechanisms controlling the air-sea CO2 flux in the North Sea
    Prowe, A. E. F.
    Thomas, Helmuth
    Paetsch, Johannes
    Kuehn, Wilfried
    Bozec, Yann
    Schiettecatte, Laure-Sophie
    Borges, Alberto V.
    de Baar, Hein J. W.
    [J]. CONTINENTAL SHELF RESEARCH, 2009, 29 (15) : 1801 - 1808
  • [4] Influence of the oceanic cool skin layer on global air-sea CO2 flux estimates
    Woods, S.
    Minnett, P. J.
    Gentemann, C. L.
    Bogucki, D.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 145 : 15 - 24
  • [5] Key Uncertainties in the Recent Air-Sea Flux of CO2
    Woolf, D. K.
    Shutler, J. D.
    Goddijn-Murphy, L.
    Watson, A. J.
    Chapron, B.
    Nightingale, P. D.
    Donlon, C. J.
    Piskozub, J.
    Yelland, M. J.
    Ashton, I
    Holding, T.
    Schuster, U.
    Girard-Ardhuin, F.
    Grouazel, A.
    Piolle, J-F
    Warren, M.
    Wrobel-Niedzwiecka, I
    Land, P. E.
    Torres, R.
    Prytherch, J.
    Moat, B.
    Hanafin, J.
    Ardhuin, F.
    Paul, F.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (12) : 1548 - 1563
  • [6] Modelling the carbon export and air-sea flux of CO2 in the Greenland Sea
    Slagstad, D
    Downing, K
    Carlotti, F
    Hirche, HJ
    [J]. DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 1999, 46 (6-7) : 1511 - 1530
  • [7] Reassessing Southern Ocean Air-Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations
    Bushinsky, Seth M.
    Landschuetzer, Peter
    Roedenbeck, Christian
    Gray, Alison R.
    Baker, David
    Mazloff, Matthew R.
    Resplandy, Laure
    Johnson, Kenneth S.
    Sarmiento, Jorge L.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2019, 33 (11) : 1370 - 1388
  • [8] The Importance of Contemporaneous Wind and pCO2 Measurements for Regional Air-Sea CO2 Flux Estimates
    Nickford, S.
    Palter, J. B.
    Mu, L.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2024, 129 (06)
  • [9] An empirical estimate of the Southern Ocean air-sea CO2 flux
    McNeil, Ben I.
    Metzl, Nicolas
    Key, Robert M.
    Matear, Richard J.
    Corbiere, Antoine
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2007, 21 (03)
  • [10] Mesoscale modulation of air-sea CO2 flux in Drake Passage
    Song, Hajoon
    Marshall, John
    Munro, David R.
    Dutkiewicz, Stephanie
    Sweeney, Colm
    McGillicuddy, D. J., Jr.
    Hausmann, Ute
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (09) : 6635 - 6649