Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis

被引:46
|
作者
Liu, Xia [1 ]
Zhang, Tonghua [2 ]
Meng, Xinzhu [3 ,4 ]
Zhang, Tongqian [3 ,4 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Swinburne Univ Technol, Dept Math, Hawthorn, Vic 3122, Australia
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[4] Shandong Univ Sci & Technol, Shandong Prov & Minist Sci & Technol, State Key Lab Min Disaster Prevent & Control, Qingdao 266590, Peoples R China
关键词
Turing pattern; Turing-Hopf bifurcation; Reaction-diffusion equations; Herd behavior; Diffusion; REACTION-DIFFUSION SYSTEM; SPATIOTEMPORAL DYNAMICS; PATTERN-FORMATION; ADDITIONAL FOOD; FUNCTIONAL-RESPONSES; CROSS-DIFFUSION; STABILITY; IMPACTS;
D O I
10.1016/j.physa.2018.01.006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 460
页数:15
相关论文
共 50 条
  • [1] Stability, Steady-State Bifurcations, and Turing Patterns in a Predator-Prey Model with Herd Behavior and Prey-taxis
    Song, Yongli
    Tang, Xiaosong
    [J]. STUDIES IN APPLIED MATHEMATICS, 2017, 139 (03) : 371 - 404
  • [2] Spatiotemporal patterns induced by Turing and Turing-Hopf bifurcations in a predator-prey system
    Chen, Mengxin
    Wu, Ranchao
    Chen, Liping
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2020, 380 (380)
  • [3] Predator-prey model with prey-taxis and diffusion
    Chakraborty, Aspriha
    Singh, Manmohan
    Lucy, David
    Ridland, Peter
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (3-4) : 482 - 498
  • [4] Bifurcations of a diffusive predator-prey model with prey-stage structure and prey-taxis
    Li, Yan
    Lv, Zhiyi
    Fan, Xiuzhen
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (18) : 18592 - 18604
  • [5] Turing-Hopf bifurcation analysis of a predator-prey model with herd behavior and cross-diffusion
    Tang, Xiaosong
    Song, Yongli
    Zhang, Tonghua
    [J]. NONLINEAR DYNAMICS, 2016, 86 (01) : 73 - 89
  • [6] Hopf and Turing-Hopf bifurcation analysis of a delayed predator-prey model with schooling behavior
    Ding, Shihua
    Yang, Rui
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [7] A Quasilinear Predator-Prey Model with Indirect Prey-Taxis
    Xing, Jie
    Zheng, Pan
    Pan, Xu
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [8] Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model
    Liu, Biao
    Wu, Ranchao
    Chen, Liping
    [J]. CHAOS, 2018, 28 (11)
  • [9] Predator-prey model with diffusion and indirect prey-taxis
    Ignacio Tello, J.
    Wrzosek, Dariusz
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11): : 2129 - 2162
  • [10] A Quasilinear Predator-Prey Model with Indirect Prey-Taxis
    Jie Xing
    Pan Zheng
    Xu Pan
    [J]. Qualitative Theory of Dynamical Systems, 2021, 20