A transcriptomics-based meta-analysis identifies a cross-tissue signature for sarcoidosis

被引:5
|
作者
Jiang, Yale [1 ,2 ,3 ]
Jiang, Dingyuan [1 ,4 ]
Costabel, Ulrich [5 ]
Dai, Huaping [1 ,4 ]
Wang, Chen [1 ,4 ,6 ,7 ]
机构
[1] China Japan Friendship Hosp, Dept Pulm & Crit Care Med, Beijing, Peoples R China
[2] Chinese Acad Med Sci Peking Union Med Coll, Clin Trial Ctr, Canc Hosp, Natl Canc Ctr,Natl Clin Res Ctr Canc, Beijing, Peoples R China
[3] Tsinghua Univ, Sch Med, Beijing, Peoples R China
[4] Chinese Acad Med Sci, Inst Resp Med, Natl Ctr Resp Med, Natl Clin Res Ctr Resp Dis, Beijing, Peoples R China
[5] Univ Hosp, Ruhrlandklin, Ctr Interstitial & Rare Lung Dis, Dept Pneumol, Essen, Germany
[6] Peking Univ Joint Ctr Life Sci, Tsinghua Univ, Beijing, Peoples R China
[7] Peking Union Med Coll, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
sarcoidosis; transcriptome; interferon; IL-17; machine learning; EXPRESSION ANALYSIS; PERIPHERAL-BLOOD; GENE; IMMUNITY; PACKAGE;
D O I
10.3389/fmed.2022.960266
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Sarcoidosis is a granulomatous disease of unknown etiology, immunologically characterized by a Th1 immune response. Transcriptome-wide expression studies in various types of sarcoid tissues contributed to better understanding of disease mechanisms. We performed a systematic database search on Gene Expression Omnibus (GEO) and utilized transcriptomic data from blood and sarcoidosis-affected tissues in a meta-analysis to identify a cross-tissue, cross-platform signature. Datasets were further separated into training and testing sets for development of a diagnostic classifier for sarcoidosis. A total of 690 differentially expressed genes were identified in the analysis among various tissues. 29 of the genes were robustly associated with sarcoidosis in the meta-analysis both in blood and in lung-associated tissues. Top genes included LINC01278 (P = 3.11 x 10(-13)), GBP5 (P = 5.56 x 10(-07)), and PSMB9 (P = 1.11 x 10(-06)). Pathway enrichment analysis revealed activated IFN-gamma, IL-1, and IL-18, autophagy, and viral infection response. IL-17 was observed to be enriched in peripheral blood specific signature genes. A 16-gene classifier achieved excellent performance in the independent validation data (AUC 0.711-0.964). This study provides a cross-tissue meta-analysis for expression profiles of sarcoidosis and identifies a diagnostic classifier that potentially can complement more invasive procedures.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Transcriptomics-Based Meta-Analysis Combined With Machine Learning Identifies a Secretory Biomarker Panel for Diagnosis of Pancreatic Adenocarcinoma
    Khatri, Indu
    Bhasin, Manoj K.
    FRONTIERS IN GENETICS, 2020, 11
  • [2] A review and meta-analysis: Cross-tissue telomere length correlations in healthy humans
    McLester-Davis, Lauren W. Y.
    Estrada, Pedro
    Hastings, Waylon J.
    Kataria, Leila A.
    Martin, Noelle A.
    Siebeneicher, Joshua T.
    Tristano, Renee I.
    V. Mayne, Celia
    Horlick, Raquel P.
    O'Connell, Samantha S.
    Drury, Stacy S.
    AGEING RESEARCH REVIEWS, 2023, 88
  • [3] A Perspective of the Cross-Tissue Interplay of Genetics, Epigenetics, and Transcriptomics, and Their Relation to Brain Based Phenotypes in Schizophrenia
    Liu, Jingyu
    Chen, Jiayu
    Perrone-Bizzozero, Nora
    Calhoun, Vince D.
    FRONTIERS IN GENETICS, 2018, 9
  • [4] Meta-Analysis of Transcriptomic Studies of Blood and Six Brain Regions Identifies a Consensus of 15 Cross-Tissue Mechanisms in Alzheimer's Disease and Suggests an Origin of Cross-Study Heterogeneity
    Hou, Jiahui
    Hess, Jonathan L.
    Zhang, Chunling
    van Rooij, Jeroen G. J.
    Hearn, Gentry C.
    Fan, Chun Chieh
    Faraone, Stephen V.
    Fennema-Notestine, Christine
    Lin, Shu-Ju
    Escott-Price, Valentina
    Seshadri, Sudha
    Alzheimers Disease Neuroimaging Initiative, Peter
    Holmans, Peter
    Tsuang, Ming T.
    Kremen, William S.
    Gaiteri, Chris
    Glatt, Stephen J.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2024,
  • [5] Transcriptomics-based analysis of Macrobrachium rosenbergii growth retardation
    Li, Xuenan
    Li, Yahui
    Dai, Xilin
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2024, 52
  • [6] Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation
    Lal, Jessica C.
    Mao, Chengsheng
    Zhou, Yadi
    Gore-Panter, Shamone R.
    Rennison, Julie H.
    Lovano, Beth S.
    Castel, Laurie
    Shin, Jiyoung
    Gillinov, A. Marc
    Smith, Jonathan D.
    Barnard, John
    Van Wagoner, David R.
    Luo, Yuan
    Cheng, Feixiong
    Chung, Mina K.
    CELL REPORTS MEDICINE, 2022, 3 (10)
  • [7] Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19
    Brian L. Le
    Gaia Andreoletti
    Tomiko Oskotsky
    Albert Vallejo-Gracia
    Romel Rosales
    Katharine Yu
    Idit Kosti
    Kristoffer E. Leon
    Daniel G. Bunis
    Christine Li
    G. Renuka Kumar
    Kris M. White
    Adolfo García-Sastre
    Melanie Ott
    Marina Sirota
    Scientific Reports, 11
  • [8] Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19
    Le, Brian L.
    Andreoletti, Gaia
    Oskotsky, Tomiko
    Vallejo-Gracia, Albert
    Rosales, Romel
    Yu, Katharine
    Kosti, Idit
    Leon, Kristoffer E.
    Bunis, Daniel G.
    Li, Christine
    Kumar, G. Renuka
    White, Kris M.
    Garcia-Sastre, Adolfo
    Ott, Melanie
    Sirota, Marina
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Cross-Tissue Transcriptomic Analysis Leveraging Machine Learning Approaches Identifies New Biomarkers for Rheumatoid Arthritis
    Rychkov, Dmitry
    Neely, Jessica
    Oskotsky, Tomiko
    Yu, Steven
    Perlmutter, Noah
    Nititham, Joanne
    Carvidi, Alexander
    Krueger, Melissa
    Gross, Andrew
    Criswell, Lindsey A.
    Ashouri, Judith F.
    Sirota, Marina
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [10] A cross-tissue transcriptome association study identifies key genes in essential hypertension
    Huang, Sihui
    Wang, Jie
    Liu, Nannan
    Li, Ping
    Wu, Sha
    Qi, Luming
    Xia, Lina
    FRONTIERS IN GENETICS, 2023, 14