Temperature dependence of frictional force in carbon nanotube oscillators

被引:23
|
作者
Chen, Yunfei [1 ,2 ]
Yang, Juekuan [1 ,2 ]
Wang, Xiaohui [1 ,2 ]
Ni, Zhonghua [1 ,2 ]
Li, Deyu [3 ]
机构
[1] Southeast Univ, Jiangsu Key Lab Design & Mfg Micronano Biomed Ins, Nanjing 210096, Peoples R China
[2] Southeast Univ, China Educ Council Key Lab MEMS, Nanjing 210096, Peoples R China
[3] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
基金
美国国家科学基金会;
关键词
Temperature distribution - Vibrations (mechanical) - Tribology - Friction - Phonons - Energy dissipation - Molecular dynamics - Yarn;
D O I
10.1088/0957-4484/20/3/035704
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Energy dissipation due to friction in telescopic carbon nanotubes is modeled by molecular dynamics over a wide temperature range. The energy dissipation or the friction force between the inner and outer tubes is strongly related to thermal effects and shows a minimum as temperature increases. At ultra-low temperatures, thermal lubrication, i.e. the reduction in the friction force because of thermal activation, plays a dominant role because energy barriers for the relative translational movement of the concentric nanotubes are so small that the thermally activated jumps effectively reduce the friction force. However, as temperature increases, the thermal jump probability saturates and when the temperature reaches a critical value the dominant phonon frequency exceeds the vibration frequency of the oscillator and more phonons will be excited by the mechanical vibration, which leads to a monotonic increase of the friction force.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Temperature Dependence of Cantilevered Carbon Nanotube Oscillation
    Fukami, Shun
    Arie, Takayuki
    Akita, Seiji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (06) : 06GK021 - 06GK024
  • [2] Dependence of the memristor effect of carbon nanotube bundles on the pressing force
    Il'ina, Marina V.
    Il'in, Oleg I.
    Guryanov, Andrey V.
    Osotova, Olga I.
    Ageev, Oleg A.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (01) : 78 - 82
  • [3] Grooving the carbon nanotube oscillators
    Wong, LH
    Zhao, Y
    Chen, GH
    Chwang, AT
    APPLIED PHYSICS LETTERS, 2006, 88 (18)
  • [4] Temperature dependence of transport properties in a suspended carbon nanotube
    Ziani, N. Traverso
    Cavaliere, F.
    Piovano, G.
    Sassetti, M.
    PHYSICA SCRIPTA, 2012, T151
  • [5] Resistance-temperature dependence in carbon nanotube fibres
    Lekawa-Raus, Agnieszka
    Walczak, Kamil
    Kozlowski, Gregory
    Wozniak, Mariusz
    Hopkins, Simon C.
    Koziol, Krzysztof K.
    CARBON, 2015, 84 : 118 - 123
  • [6] Resistance-temperature dependence in carbon nanotube fibres
    Lekawa-Raus, Agnieszka
    Walczak, Kamil
    Kozlowski, Gregory
    Wozniak, Mariusz
    Hopkins, Simon C.
    Koziol, Krzysztof K.
    Carbon, 2015, 84 (01) : 118 - 123
  • [7] Thermophoretically driven carbon nanotube oscillators
    Coluci, V. R.
    Timoteo, V. S.
    Galvao, D. S.
    APPLIED PHYSICS LETTERS, 2009, 95 (25)
  • [8] Carbon nanotube oscillators for applications as nanothermometers
    Rahmat, Fainida
    Thamwattana, Ngamta
    Hill, James M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (40)
  • [9] Gas damping of carbon nanotube oscillators
    Martin, Michael James
    Houston, Brian H.
    APPLIED PHYSICS LETTERS, 2007, 91 (10)
  • [10] Energy exchanges in carbon nanotube oscillators
    Zhao, Y
    Ma, CC
    Wong, LH
    Chen, GH
    Xu, ZP
    Zheng, QS
    Jiang, Q
    Chwang, AT
    NANOTECHNOLOGY, 2006, 17 (04) : 1032 - 1035