Special cohomology classes for modular Galois representations

被引:5
|
作者
Howard, B [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jnt.2005.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building on ideas of Vatsal [Uniform distribution of Heegner points, Invent. Math. 148(l) (2002) 1-46], Cornut [Mazur's conjecture on higher Heegner points, Invent. Math. 148(3) (2002) 495-523] proved a conjecture of Mazur asserting the generic nonvanishing of Heegner points on an elliptic curve E-/Q as one ascends the anticyclotomic Z(p)-extension of a quadratic imaginary extension K/Q. In the present article, Cornut's result is extended by replacing the elliptic curve E with the Galois cohomology of Deligne's two-dimensional l-adic representation attached to a modular form of weight 2k > 2, and replacing the family of Heegner points with an analogous family of special cohomology classes. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:406 / 438
页数:33
相关论文
共 50 条