A Modular and Composable Approach to Develop Trusted Artificial Intelligence

被引:0
|
作者
Langford, Michael Austin [1 ]
Cheng, Betty H. C. [1 ]
机构
[1] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
software engineering; models at run time; self-adaptive systems; artificial intelligence; deep learning;
D O I
10.1109/ACSOS55765.2022.00030
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Trustworthy artificial intelligence (Trusted AI) is of utmost importance when learning-enabled components (LECs) are used in autonomous, safety-critical systems. When reliant on deep learning, these systems need to address the reliability, robustness, and interpretability of learning models. In addition to developing specific strategies to address each of these concerns, appropriate software architectures are needed to coordinate LECs and ensure they deliver acceptable behavior under uncertain conditions. This work proposes a model-driven framework of loosely-coupled modular services designed to monitor and control LECs with respect to Trusted AI assurance concerns. The proposed framework is composable, deploying independent services to improve the resilience and robustness of AI systems. The overarching objective of this framework is to support software engineering principles focusing on modularity, composability, and reusability in order to facilitate development and maintenance tasks, while also increasing stakeholder confidence in Trusted AI systems. To demonstrate this framework, it has been implemented to manage the operation of an autonomous rover's vision-based LEC while exposed to uncertain environmental conditions.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [1] Anunnaki: A Modular Framework for Developing Trusted Artificial Intelligence
    Langford, Michael Austin
    Zilberman, Sol
    Cheng, Betty
    [J]. ACM Transactions on Autonomous and Adaptive Systems, 2024, 19 (03)
  • [2] A Survey on Trusted Distributed Artificial Intelligence
    Agca, Muhammed Akif
    Faye, Sebastien
    Khadraoui, Djamel
    [J]. IEEE ACCESS, 2022, 10 : 55308 - 55337
  • [3] What Is Needed for Artificial Intelligence to Be Trusted?
    Pellikka, Patricia A.
    Hamza, Izhan
    Carter, Rickey E.
    [J]. AMERICAN JOURNAL OF MEDICINE, 2022, 135 (04): : 421 - 423
  • [4] Trusted Distributed Artificial Intelligence (TDAI)
    Agca, Muhammed Akif
    Faye, Sebastien
    Khadraoui, Djamel
    [J]. IEEE ACCESS, 2023, 11 : 113307 - 113323
  • [5] Trusted Artificial Intelligence: Challenges and Promising Solutions
    Turdakov, D. Yu.
    Avetisyan, A. I.
    Arkhipenko, K. V.
    Antsiferova, A. V.
    Vatolin, D. S.
    Volkov, S. S.
    Gasnikov, A. V.
    Devyatkin, D. A.
    Drobyshevsky, M. D.
    Kovalenko, A. P.
    Krivonosov, M. I.
    Lukashevich, N. V.
    Malykh, V. A.
    Nikolenko, S. I.
    Oseledets, I. V.
    Perminov, A. I.
    Sochenkov, I. V.
    Tikhomirov, M. M.
    Fedotov, A. N.
    Khachay, M. Yu.
    [J]. DOKLADY MATHEMATICS, 2022, 106 (SUPPL 1) : S9 - S13
  • [6] Trusted Artificial Intelligence: Challenges and Promising Solutions
    D. Yu. Turdakov
    A. I. Avetisyan
    K. V. Arkhipenko
    A. V. Antsiferova
    D. S. Vatolin
    S. S. Volkov
    A. V. Gasnikov
    D. A. Devyatkin
    M. D. Drobyshevsky
    A. P. Kovalenko
    M. I. Krivonosov
    N. V. Lukashevich
    V. A. Malykh
    S. I. Nikolenko
    I. V. Oseledets
    A. I. Perminov
    I. V. Sochenkov
    M. M. Tikhomirov
    A. N. Fedotov
    M. Yu. Khachay
    [J]. Doklady Mathematics, 2022, 106 : S9 - S13
  • [7] Artificial Intelligence for Trusted Autonomous Satellite Operations
    Thangavel, Kathiravan
    Sabatini, Roberto
    Gardi, Alessandro
    Ranasinghe, Kavindu
    Hilton, Samuel
    Servidia, Pablo
    Spiller, Dario
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2024, 144
  • [8] Trusted artificial intelligence: Strengthening digital protection
    Avdoshin, Sergey M.
    Pesotskaya, Elena Yu.
    [J]. BIZNES INFORMATIKA-BUSINESS INFORMATICS, 2022, 16 (02): : 62 - 73
  • [9] Using neuroscience to develop artificial intelligence
    Ullman, Shimon
    [J]. SCIENCE, 2019, 363 (6428) : 692 - 693
  • [10] Towards Enabling Trusted Artificial Intelligence via Blockchain
    Sarpatwar, Kanthi
    Vaculin, Roman
    Min, Hong
    Su, Gong
    Heath, Terry
    Ganapavarapu, Giridhar
    Dillenberger, Donna
    [J]. POLICY-BASED AUTONOMIC DATA GOVERNANCE (PADG 2018), 2019, 11550 : 137 - 153