LANDMARK SELECTION USING HOMOGENEITY ON NONLINEAR MANIFOLDS FOR UNMIXING HYPERSPECTRAL DATA

被引:3
|
作者
Chi, Junhwa [1 ]
Crawford, Melba M. [1 ]
机构
[1] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA
关键词
dimensionality reduction; ISOMAP; landmark selection; LLE; manifold; spectral unmixing;
D O I
10.1109/IGARSS.2012.6350823
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spectral unmixing methods that exploit nonlinearity in hyperspectral data are promising, but face significant computational challenges, Global dimensionality reduction methods such as ISOMAP have significant computational overhea, while local methods such as Locally Linear Embedding (LLE), are computationally less demanding, but may not be robust. We propose a new landmark selection method for spectral unmixing that exploits spectral and spatial information, and embed it in LLE, resulting in a hybrid method whose structure shares characteristics with both global and local manifolds. Performance of the method is compared to that of several landmark selection methods in terms of mean of reconstruction error and corresponding variance, processing time, and visual inspection of the fully unmixed scene.
引用
收藏
页码:1373 / 1376
页数:4
相关论文
共 50 条
  • [1] Selection of Landmark Points on Nonlinear Manifolds for Spectral Unmixing Using Local Homogeneity
    Chi, Junhwa
    Crawford, Melba M.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (04) : 711 - 715
  • [2] NONLINEAR HYPERSPECTRAL UNMIXING USING GAUSSIAN PROCESSES
    Altmann, Y.
    Dobigeon, N.
    Tourneret, J. -Y
    McLaughlin, S.
    [J]. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [3] BAND SELECTION IN RKHS FOR FAST NONLINEAR UNMIXING OF HYPERSPECTRAL IMAGES
    Imbiriba, T.
    Bermudez, J. C. M.
    Richard, C.
    Tourneret, J. -Y.
    [J]. 2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1651 - 1655
  • [4] HYPERSPECTRAL AND MULTISPECTRAL DATA FUSION BASED ON NONLINEAR UNMIXING
    Yokoya, Naoto
    Chanussot, Jocelyn
    Iwasaki, Akira
    [J]. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [5] Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization
    Yokoya, Naoto
    Chanussot, Jocelyn
    Iwasaki, Akira
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (02): : 1430 - 1437
  • [6] SUBSPACE SELECTION FOR HYPERSPECTRAL PANSHARPENING USING SPARSE UNMIXING
    Ge Chiru
    Li Yunsong
    Li Jiaojiao
    Wang Keyan
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7232 - 7235
  • [7] A Sturdy Nonlinear Hyperspectral Unmixing
    Venkata Sireesha, M.
    Naganjaneyulu, P. V.
    Babulu, K.
    [J]. IETE JOURNAL OF RESEARCH, 2023, 69 (02) : 762 - 777
  • [8] ABUNDANCE GUIDED ENDMEMBER SELECTION: AN ALGORITHM FOR UNMIXING HYPERSPECTRAL DATA
    Dowler, Shaun
    Andrews, Mark
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2649 - 2652
  • [9] Unmixing hyperspectral data
    Parra, L
    Spence, C
    Sajda, P
    Ziehe, A
    Müller, KR
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 942 - 948
  • [10] BLIND NONLINEAR HYPERSPECTRAL UNMIXING USING AN lq REGULARIZER
    Sigurdsson, J.
    Ulfarsson, M. O.
    Sveinsson, J. R.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4225 - 4228