Identification of Cell Surface Targets through Meta-analysis of Microarray Data

被引:14
|
作者
Haeberle, Henry [1 ,2 ]
Dudley, Joel T. [1 ,3 ]
Liu, Jonathan T. C. [1 ,2 ]
Butte, Atul J. [1 ,4 ,5 ]
Contag, Christopher H. [1 ,2 ,6 ,7 ]
机构
[1] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
[2] Stanford Univ, Program Mol Imaging, Stanford, CA 94305 USA
[3] Stanford Univ, Biomed Informat Training Program, Stanford, CA 94305 USA
[4] Stanford Univ, Div Syst Med, Stanford, CA 94305 USA
[5] Stanford Univ, Program Canc Biol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[7] Stanford Univ, Dept Microbiol & Immunol, Stanford, CA 94305 USA
来源
NEOPLASIA | 2012年 / 14卷 / 07期
基金
美国国家卫生研究院;
关键词
KINASE GENE FAMILY; SOMATIC MUTATIONS; BRAIN-TUMOR; MEDULLOBLASTOMA; CANCER; FIBRILLIN-1; EXPRESSION; RECEPTORS; CHILDREN;
D O I
10.1593/neo.12634
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
High-resolution image guidance for resection of residual tumor cells would enable more precise and complete excision for more effective treatment of cancers, such as medulloblastoma, the most common pediatric brain cancer. Numerous studies have shown that brain tumor patient outcomes correlate with the precision of resection. To enable guided resection with molecular specificity and cellular resolution, molecular probes that effectively delineate brain tumor boundaries are essential. Therefore, we developed a bioinformatics approach to analyze microarray datasets for the identification of transcripts that encode candidate cell surface biomarkers that are highly enriched in medulloblastoma. The results identified 380 genes with greater than a two-fold increase in the expression in the medulloblastoma compared with that in the normal cerebellum. To enrich for targets with accessibility for extracellular molecular probes, we further refined this list by filtering it with gene ontology to identify genes with protein localization on, or within, the plasma membrane. To validate this meta-analysis, the top 10 candidates were evaluated with immunohistochemistry. We identified two targets, fibrillin 2 and EphA3, which specifically stain medulloblastoma. These results demonstrate a novel bioinformatics approach that successfully identified cell surface and extracellular candidate markers enriched in medulloblastoma versus adjacent cerebellum. These two proteins are high-value targets for the development of tumor-specific probes in medulloblastoma. This bioinformatics method has broad utility for the identification of accessible molecular targets in a variety of cancers and will enable probe development for guided resection.
引用
收藏
页码:666 / 669
页数:4
相关论文
共 50 条
  • [1] Identification of Genes Expressed in Hyperpigmented Skin Using Meta-Analysis of Microarray Data Sets
    Yin, Lanlan
    Coelho, Sergio G.
    Valencia, Julio C.
    Ebsen, Dominik
    Mahns, Andre
    Smuda, Christoph
    Miller, Sharon A.
    Beer, Janusz Z.
    Kolbe, Ludger
    Hearing, Vincent J.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2015, 135 (10) : 2455 - 2463
  • [2] Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis
    Marot, Guillemette
    Mayer, Claus-Dieter
    [J]. STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2009, 8 (01)
  • [3] Meta-Analysis of Pre-Eclampsia Microarray Data
    Dopierala, Justyna A.
    Smith, Gordon C.
    Charnock-Jones, Stephen D.
    [J]. REPRODUCTIVE SCIENCES, 2013, 20 (S3) : 262A - 262A
  • [4] An introduction to MAMA (Meta-Analysis of MicroArray data) system
    Zhang, Zhe
    Fenstermacher, David
    [J]. 2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 7730 - 7733
  • [5] Integrating Meta-Analysis of Microarray Data and Targeted Proteomics for Biomarker Identification: Application in Breast Cancer
    Pavlou, Maria P.
    Dimitromanolakis, Apostolos
    Martinez-Morillo, Eduardo
    Smid, Marcel
    Foekens, John A.
    Diamandis, Eleftherios P.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2014, 13 (06) : 2897 - 2909
  • [6] Bayesian meta-analysis models for microarray data: a comparative study
    Erin M Conlon
    Joon J Song
    Anna Liu
    [J]. BMC Bioinformatics, 8
  • [7] Statistical methods for meta-analysis of microarray data: A comparative study
    Hu, PZ
    Greenwood, CMT
    Beyene, J
    [J]. INFORMATION SYSTEMS FRONTIERS, 2006, 8 (01) : 9 - 20
  • [8] Bayesian meta-analysis models for microarray data: a comparative study
    Conlon, Erin M.
    Song, Joon J.
    Liu, Anna
    [J]. BMC BIOINFORMATICS, 2007, 8 (1)
  • [9] Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study
    Pingzhao Hu
    Celia M. T. Greenwood
    Joseph Beyene
    [J]. Information Systems Frontiers, 2006, 8 : 9 - 20
  • [10] Identification of Reference Genes across Physiological States for qRT-PCR through Microarray Meta-Analysis
    Cheng, Wei-Chung
    Chang, Cheng-Wei
    Chen, Chaang-Ray
    Tsai, Min-Lung
    Shu, Wun-Yi
    Li, Chia-Yang
    Hsu, Ian C.
    [J]. PLOS ONE, 2011, 6 (02):