LARGE TIME BEHAVIOR OF SOLUTIONS TO THE ISENTROPIC COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE IN R3

被引:1
|
作者
Tan, Zhong [1 ]
Wang, Yong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Korteweg system; compressible Navier-Stokes equations; optimal decay rates; energy estimates; NAVIER-STOKES EQUATIONS; OPTIMAL DECAY-RATE; ASYMPTOTIC-BEHAVIOR; SYSTEM; EXISTENCE; MOTION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the long-time behavior and optimal decay rates of global strong solutions to the isentropic compressible Navier-Stokes-Korteweg system in R-3. When the regular initial data belong to the Sobolev space Hl+1(R-3) boolean AND (B) over dot(1,infinity)(-s)(R-3) x H-l(R-3) boolean AND (B) over dot(1,infinity)(-s)(R-3) with l >= 3 and s is an element of [0,1], we show that the density and momentum of the system converges to its equilibrium state at the rates (1+t)(-3/4 -s/ 2) in the L-2-norm or (1+t)(-3/2 -s/2) in the L-infinity-norm, respectively, which are proved to be optimal for the compressible Navier-Stokes-Korteweg system.
引用
收藏
页码:1207 / 1223
页数:17
相关论文
共 50 条