On the perturbation of Volterra integro-differential equations

被引:10
|
作者
Jung, Soon-Mo [1 ]
Sevgin, Sebaheddin [2 ]
Sevli, Hamdullah [3 ]
机构
[1] Hongik Univ, Coll Sci & Technol, Math Sect, Jochiwon 339701, South Korea
[2] Yuzuncu Yil Univ, Fac Art & Sci, Dept Math, TR-65080 Van, Turkey
[3] Istanbul Commerce Univ, Fac Sci & Arts, Dept Math, TR-34672 Istanbul, Turkey
关键词
Volterra integro-differential equation; Volterra integral equation of the second kind; Perturbation; Hyers-Ulam stability; Generalized Hyers-Ulam stability; HYERS-ULAM STABILITY; DIFFERENTIAL-EQUATIONS; 1ST-ORDER;
D O I
10.1016/j.aml.2012.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we will prove that every solution of a perturbed Volterra integro-differential equation can be approximated by a solution of the Volterra integro-differential equation. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:665 / 669
页数:5
相关论文
共 50 条
  • [1] INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MR
    TSOKOS, CP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (03): : 528 - &
  • [2] The Volterra Theory of Integro-Differential Equations
    Soldatov A.
    Zaripov S.
    [J]. Journal of Mathematical Sciences, 2023, 277 (3) : 467 - 475
  • [3] THE ELZAKI TRANSFORM WITH HOMOTOPY PERTURBATION METHOD FOR NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
    Jayaprakasha, P. C.
    Baishya, Chandrali
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2020, 23 (02): : 165 - 185
  • [4] Approximations for a class of Volterra integro-differential equations
    Nguyen, HK
    Herdman, TL
    Cliff, EM
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (5-6) : 659 - 672
  • [5] Numerical solution of Volterra integro-differential equations
    Vanani, S. Karimi
    Aminataei, A.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (04) : 654 - 662
  • [6] On a class of retarded integro-differential Volterra equations
    Fouad Maragh
    [J]. Advances in Operator Theory, 2023, 8
  • [7] Feedback Volterra control of integro-differential equations
    Pepe, G.
    Paifelman, E.
    Carcaterra, A.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (11) : 2651 - 2670
  • [8] On the Optimal Control of Volterra Integro-Differential Equations
    Azhmyakov, Vadim
    Egerstedt, Magnus
    Verriest, Erik I.
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 3340 - 3345
  • [9] Semigroups Generated by Volterra Integro-Differential Equations
    Rautian, N. A.
    [J]. DIFFERENTIAL EQUATIONS, 2020, 56 (09) : 1193 - 1211
  • [10] On a class of retarded integro-differential Volterra equations
    Maragh, Fouad
    [J]. ADVANCES IN OPERATOR THEORY, 2023, 8 (02)