A numerical approximation to the solution of a nonlocal obstacle thermistor problem

被引:0
|
作者
Allegretto, W [1 ]
Lin, YP [1 ]
Ma, SQ [1 ]
机构
[1] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
来源
关键词
box method; thermistor; obstacle problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a box scheme for a nonlocal obstacle problem which arises from the thermistor microsensor model. The box method is characterized by a trial space consisting of continuous piecewise linear polynomials on a quasiuniform triangulation and by a test space consisting of piecewise constants on a circumcenter dual box mesh. The existence and uniqueness of the numerical system are obtained and an optimal H-1-norm error estimate is achieved.
引用
收藏
页码:229 / 235
页数:7
相关论文
共 50 条
  • [1] Analysis and approximation of a nonlocal obstacle problem
    Guan, Qingguang
    Gunzburger, Max
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 102 - 118
  • [2] Numerical solution of the thermistor problem
    Çatal, S
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (03) : 743 - 757
  • [3] EXISTENCE OF SOLUTION TO A NONLOCAL CONFORMABLE FRACTIONAL THERMISTOR PROBLEM
    Ammi, Moulay Rchid Sidi
    Torres, Delfim F. M.
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 1061 - 1072
  • [4] Numerical analysis of a nonlocal parabolic problem resulting from thermistor problem
    Sidi Ammi, Moulay Rchid
    Torres, Delfim F. M.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 77 (2-3) : 291 - 300
  • [5] Numerical Approximation of a Unilateral Obstacle Problem
    E. B. Mermri
    W. Han
    [J]. Journal of Optimization Theory and Applications, 2012, 153 : 177 - 194
  • [6] Numerical Approximation of a Unilateral Obstacle Problem
    Mermri, E. B.
    Han, W.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 153 (01) : 177 - 194
  • [7] The Obstacle Thermistor Problem with Periodic Data
    Badii, Maurizio
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 121 : 145 - 159
  • [8] Numerical Solution One Nonlocal Problem
    Mehdiyeva, Galina
    Aliyev, Aydin
    [J]. 2012 IV INTERNATIONAL CONFERENCE PROBLEMS OF CYBERNETICS AND INFORMATICS (PCI), 2012,
  • [9] ON NUMERICAL-SOLUTION OF A NONLOCAL PROBLEM
    HERCEG, D
    PETROVIC, N
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T649 - T652
  • [10] On the Numerical Solution of a Multilevel Nonlocal Problem
    E. A. Volkov
    A. A. Dosiyev
    [J]. Mediterranean Journal of Mathematics, 2016, 13 : 3589 - 3604