UNCERTAINTY QUANTIFICATION IN MD SIMULATIONS. PART I: FORWARD PROPAGATION

被引:50
|
作者
Rizzi, F. [2 ]
Najm, H. N. [1 ]
Debusschere, B. J. [1 ]
Sargsyan, K. [1 ]
Salloum, M. [1 ]
Adalsteinsson, H. [1 ]
Knio, O. M. [2 ]
机构
[1] Sandia Natl Labs, Livermore, CA 94550 USA
[2] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA
来源
MULTISCALE MODELING & SIMULATION | 2012年 / 10卷 / 04期
关键词
uncertainty quantification; Bayesian inference; polynomial chaos; molecular dynamics; TIP4P water; adaptive sampling; POTENTIAL FUNCTIONS; WATER MODEL; CONTINUUM; DYNAMICS; FLUID; FLOW; TEMPERATURE; ERGODICITY; BOLTZMANN; EQUATIONS;
D O I
10.1137/110853169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work focuses on quantifying the effect of intrinsic (thermal) noise and parametric uncertainty in molecular dynamics (MD) simulations. We consider isothermal, isobaric MD simulations of TIP4P (or four-site) water at ambient conditions, T = 298 K and P = 1 atm. Parametric uncertainty is assumed to originate from three force-field parameters that are parametrized in terms of standard uniform random variables. The thermal fluctuations inherent in MD simulations combine with parametric uncertainty to yield nondeterministic, noisy MD predictions of bulk water properties. Relying on polynomial chaos (PC) expansions, we develop a framework that enables us to isolate the impact of parametric uncertainty on the MD predictions and control the effect of the intrinsic noise. We construct the PC representations of quantities of interest (QoIs) using two different approaches: nonintrusive spectral projection (NISP) and Bayesian inference. We verify a priori the legitimacy of the NISP approach by verifying that the MD data satisfy regularity and smoothness conditions in the parameter space. The Bayesian inference approach relies on adaptively sampling the parameter space, based on analyzing the convergence of the PC expansions at different approximation levels. We show that for the present case, the effect of the thermal noise in the atomistic system can be controlled, and the MD predictions for the QoIs can be suitably represented using low-order PC models.
引用
收藏
页码:1428 / 1459
页数:32
相关论文
共 50 条
  • [1] UNCERTAINTY QUANTIFICATION IN MD SIMULATIONS. PART II: BAYESIAN INFERENCE OF FORCE-FIELD PARAMETERS
    Rizzi, F.
    Najm, H. N.
    Debusschere, B. J.
    Sargsyan, K.
    Salloum, M.
    Adalsteinsson, H.
    Knio, O. M.
    MULTISCALE MODELING & SIMULATION, 2012, 10 (04): : 1460 - 1492
  • [2] Bayesian Uncertainty Quantification and Propagation in Structural Dynamics Simulations
    Papadimitriou, Costas
    EURODYN 2014: IX INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, 2014, : 111 - 123
  • [3] Ligand binding affinities from MD simulations.
    Åqvist, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : U468 - U468
  • [4] A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
    Sankaran, Sethuraman
    Marsden, Alison L.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2011, 133 (03):
  • [5] Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials
    Hadjidoukas, P. E.
    Angelikopoulos, P.
    Rossinelli, D.
    Alexeev, D.
    Papadimitriou, C.
    Koumoutsakos, P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 282 : 218 - 238
  • [6] Component-based distributed simulations. The way forward?
    Verbraeck, A
    18TH WORKSHOP ON PARALLEL AND DISTRIBUTED SIMULATION, PROCEEDINGS, 2004, : 141 - 148
  • [7] A study of the collapse of spherical shells, part I: Uncertainty quantification
    Pepin, J. E.
    Thacker, B. H.
    Riha, D. S.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 909 - 916
  • [8] General relativistic cosmological N-body simulations. Part I. Time integration
    Daverio, David
    Dirian, Yves
    Mitsou, Ermis
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (10):
  • [9] UNCERTAINTY QUANTIFICATION IN TURBOMACHINERY SIMULATIONS
    Emory, Michael
    Iaccarino, Gianluca
    Laskowski, Gregory M.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2016, VOL 2C, 2016,
  • [10] Uncertainty quantification for multiscale simulations
    DeVolder, B
    Glimm, J
    Grove, JW
    Kang, Y
    Lee, Y
    Pao, K
    Sharp, DH
    Ye, K
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (01): : 29 - 41