Minimal generators for symmetric ideals

被引:1
|
作者
Hillar, Christopher J. [1 ]
Windfeldt, Troels [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Copenhagen, Dept Math Sci, DK-1165 Copenhagen, Denmark
关键词
invariant ideal; symmetric group; Grobner basis; minimal generators;
D O I
10.1090/S0002-9939-08-09427-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = K[X] be the polynomial ring in in finitely many indeterminates X over a field K, and let G(X) be the symmetric group of X. The group G(X) acts naturally on R, and this in turn gives R the structure of a module over the group ring R[G(X)]. A recent theorem of Aschenbrenner and Hillar states that the module R is Noetherian. We address whether submodules of R can have any number of minimal generators, answering this question positively.
引用
收藏
页码:4135 / 4137
页数:3
相关论文
共 50 条