An effective branch-and-bound algorithm for convex quadratic integer programming

被引:29
|
作者
Buchheim, Christoph [2 ]
Caprara, Alberto [1 ]
Lodi, Andrea [1 ]
机构
[1] Univ Bologna, DEIS, I-40136 Bologna, Italy
[2] Tech Univ Dortmund, Fak Math, D-44227 Dortmund, Germany
关键词
Convex quadratic minimization; Closest vector problem; Branch-and-bound algorithm; Computational results;
D O I
10.1007/s10107-011-0475-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a branch-and-bound algorithm for minimizing a convex quadratic objective function over integer variables subject to convex constraints. In a given node of the enumeration tree, corresponding to the fixing of a subset of the variables, a lower bound is given by the continuous minimum of the restricted objective function. We improve this bound by exploiting the integrality of the variables using suitably-defined lattice-free ellipsoids. Experiments show that our approach is very fast on both unconstrained problems and problems with box constraints. The main reason is that all expensive calculations can be done in a preprocessing phase, while a single node in the enumeration tree can be processed in linear time in the problem dimension.
引用
收藏
页码:369 / 395
页数:27
相关论文
共 50 条
  • [1] An effective branch-and-bound algorithm for convex quadratic integer programming
    Christoph Buchheim
    Alberto Caprara
    Andrea Lodi
    [J]. Mathematical Programming, 2012, 135 : 369 - 395
  • [2] An Effective Branch-and-Bound Algorithm for Convex Quadratic Integer Programming
    Buchheim, Christoph
    Caprara, Alberto
    Lodi, Andrea
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2010, 6080 : 285 - +
  • [3] A BRANCH-AND-BOUND ALGORITHM FOR SOLVING SEPARABLE CONVEX INTEGER PROGRAMMING-PROBLEMS
    LEE, WJ
    CABOT, AV
    VENKATARAMANAN, MA
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1994, 21 (09) : 1011 - 1024
  • [4] An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints
    Cheng Lu
    Zhibin Deng
    Qingwei Jin
    [J]. Journal of Global Optimization, 2017, 67 : 475 - 493
  • [5] An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints
    Lu, Cheng
    Deng, Zhibin
    Jin, Qingwei
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2017, 67 (03) : 475 - 493
  • [6] A lifted linear programming branch-and-bound algorithm for mixed-integer conic quadratic programs
    Vielma, Juan Pablo
    Ahmed, Shabbir
    Nemhauser, George L.
    [J]. INFORMS JOURNAL ON COMPUTING, 2008, 20 (03) : 438 - 450
  • [7] An enhanced branch-and-bound algorithm for bilevel integer linear programming
    Liu, Shaonan
    Wang, Mingzheng
    Kong, Nan
    Hu, Xiangpei
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 291 (02) : 661 - 679
  • [8] A new branch-and-bound algorithm for standard quadratic programming problems
    Liuzzi, G.
    Locatelli, M.
    Piccialli, V.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (01): : 79 - 97
  • [9] A new branch and bound algorithm for integer quadratic programming problems
    Ma, Xiaohua
    Gao, Yuelin
    Liu, Xia
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1153 - 1164
  • [10] AN EFFECTIVE BRANCH-AND-BOUND ALGORITHM IN BOOLEAN QUADRATIC OPTIMIZATION PROBLEMS
    KORNER, F
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (08): : 392 - 394