A spline smoothing Newton method for finite minimax problems

被引:2
|
作者
Dong, Li [1 ,2 ]
Yu, Bo [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian, Liaoning, Peoples R China
[2] Dalian Nationalities Univ, Coll Sci, Dalian, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Cubic spline; Finite minimax problem; Smoothing technique; Stabilized Newton method; OPTIMIZATION; ALGORITHM; DESIGN;
D O I
10.1007/s10665-014-9733-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A spline smoothing stabilized Newton method for finite minimax problems is developed. The spline smoothing technique uses a smooth cubic spline instead of a max function, and, at any fixed point, only a few components of the max function are involved; i.e., it introduces an active set technique, so the proposed method is more efficient for minimizing the maximum function of a large number of complicated functions. Some numerical results comparisons with other methods are also given to show the efficiency of the new method.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 50 条
  • [1] A spline smoothing Newton method for finite minimax problems
    Li Dong
    Bo Yu
    Journal of Engineering Mathematics, 2015, 93 : 145 - 158
  • [2] A Spline Smoothing Newton Method for Semi-Infinite Minimax Problems
    Dong, Li
    Yu, Bo
    Xiao, Yu
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] A truncated aggregate smoothing Newton method for minimax problems
    Xiao, Yu
    Yu, Bo
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (06) : 1868 - 1879
  • [4] Smoothing Method for Minimax Problems
    Song Xu
    Computational Optimization and Applications, 2001, 20 : 267 - 279
  • [5] Smoothing method for minimax problems
    Xu, S
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2001, 20 (03) : 267 - 279
  • [6] Algorithms with adaptive smoothing for finite minimax problems
    Polak, E
    Royset, JO
    Womersley, RS
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 119 (03) : 459 - 484
  • [7] Algorithms with Adaptive Smoothing for Finite Minimax Problems
    E. Polak
    J. O. Royset
    R. S. Womersley
    Journal of Optimization Theory and Applications, 2003, 119 : 459 - 484
  • [8] A smoothing iterative method for the finite minimax problem
    Liu, J. K.
    Zheng, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 374
  • [9] An Adaptive Smoothing Method for Continuous Minimax Problems
    Yin, Hongxia
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (01)
  • [10] Hyperbolic smoothing function method for minimax problems
    Bagirov, A. M.
    Al Nuaimat, A.
    Sultanova, N.
    OPTIMIZATION, 2013, 62 (06) : 759 - 782