Application and extension of the TOPSIS method for the assessment of floating offshore wind turbine support structures

被引:26
|
作者
Martin, H. [1 ]
Spano, G. [2 ]
Kuester, J. F. [3 ]
Collu, M. [3 ]
Kolios, A. J. [3 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London, England
[2] BPP Tech Serv Ltd, London, England
[3] Cranfield Univ, Offshore Proc & Energy Engn Dept, Cranfield MK43 0AL, Beds, England
关键词
offshore wind; floating wind turbines; FOWT; conceptual design; vertical axis wind turbines (VAWT); multi-criteria decision making (MCDM); TOPSIS method;
D O I
10.1080/17445302.2012.718957
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The offshore wind industry is shifting its focus towards deeper water sites, more suited to floating rather than bottom fixed support structures. Floating support structures currently used for oil and gas platforms provide a starting point for the floating wind industry; however, the selection of an optimum structure is not trivial with several unique factors that contribute to its complexity. In this work programme, a methodology to rapidly assess several concepts for wind turbine floating support structures is proposed. Using the multi-criteria decision-making method, TOPSIS, configurations are rated for a range of attributes. In addition, two complementary methodologies have been developed that extend the TOPSIS capability by including an estimated impact of the uncertainties associated with each of the selected criteria, on the final choice of an optimum support structure. This methodology represents a robust yet flexible design tool to complement the early conceptual design process that is able to rapidly investigate a broad design space and narrow down the number of potential options suitable for floating wind turbines.
引用
收藏
页码:477 / 487
页数:11
相关论文
共 50 条
  • [1] Structural integrity assessment of floating offshore wind turbine support structures
    Moghaddam, Behrooz Tafazzoli
    Hamedany, Ali Mahboob
    Taylor, Jessica
    Mehmanparast, Ali
    Brennan, Feargal
    Davies, Catrin Mair
    Nikbin, Kamran
    OCEAN ENGINEERING, 2020, 208
  • [2] GUIDELINE FOR OFFSHORE FLOATING WIND TURBINE STRUCTURES
    Ronold, Knut O.
    Hansen, Vigleik L.
    Godvik, Marte
    Landet, Einar
    Jorgensen, Erik R.
    Hopstad, Anne Lene H.
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 3, 2010, : 381 - 388
  • [3] Risk assessment of Floating Offshore Wind Turbine
    Grasu, Gabriela
    Liu, Pengfei
    ENERGY REPORTS, 2023, 9 : 1 - 18
  • [4] A NEW BALLASTED FLOATING SUPPORT FOR OFFSHORE WIND TURBINE
    Poirette, Yann
    Perdrizet, Timothee
    Gilloteaux, Jean Christophe
    Pourtier, Alice
    Mabile, Claude
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9B: OCEAN RENEWABLE ENERGY, 2014,
  • [5] AXIOMATIC DESIGN BASED ASSESSMENT OF OFFSHORE WIND TURBINE SUPPORT STRUCTURES
    Salonitis, Konstantinos
    Kolios, Athanasios
    M2D2015: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS IN DESIGN, 2015, : 613 - 614
  • [6] Multi-criteria assessment of offshore wind turbine support structures
    Lozano-Minguez, E.
    Kolios, A. J.
    Brennan, F. P.
    RENEWABLE ENERGY, 2011, 36 (11) : 2831 - 2837
  • [7] Relative assessment of fatigue loads for offshore wind turbine support structures
    Stieng, Lars Einar S.
    Hetland, Ruth
    Schafhirt, Sebastian
    Muskulus, Michael
    12TH DEEP SEA OFFSHORE WIND R&D CONFERENCE, (EERA DEEPWIND 2015), 2015, 80 : 229 - 236
  • [8] A developed failure mode and effect analysis for floating offshore wind turbine support structures
    Li, He
    Diaz, H.
    Soares, C. Guedes
    RENEWABLE ENERGY, 2021, 164 : 133 - 145
  • [9] Evaluation Model of Offshore Wind Turbine Structures Based on Entropy-TOPSIS Method
    Sun, Miaojun
    Chen, Yujing
    Zhou, Zhiji
    Zhang, Min
    Proceedings of the International Offshore and Polar Engineering Conference, 2023, : 440 - 446
  • [10] Life cycle assessment of a floating offshore wind turbine
    Weinzettel, Jan
    Reenaas, Marte
    Solli, Christian
    Hertwich, Edgar G.
    RENEWABLE ENERGY, 2009, 34 (03) : 742 - 747